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Abstract: NASA’s Soil Moisture Active Passive (SMAP) mission only retrieved ~2.5 months of 3 km
near surface soil moisture (NSSM) before its radar transmitter malfunctioned. NSSM remains an
important area of study, and multiple applications would benefit from 3 km NSSM data. With the
goal of creating a 3 km NSSM product, we developed an algorithm to downscale SMAP brightness
temperatures (TBs) using Cyclone Global Navigation Satellite System (CYGNSS) reflectivity data.
The purpose of downscaling SMAP TB is to represent the spatial heterogeneity of TB at a finer scale
than possible via passive microwave data alone. Our SMAP/CYGNSS TB downscaling algorithm
uses β as a scaling factor that adjusts TB based on variations in CYGNSS reflectivity. β is the
spatially varying slope of the negative linear relationship between SMAP emissivity (TB divided by
surface temperature) and CYGNSS reflectivity. In this paper, we describe the SMAP/CYGNSS TB
downscaling algorithm and its uncertainties and we analyze the factors that affect the spatial patterns
of SMAP/CYGNSS β. 3 km SMAP/CYGNSS TBs are more spatially heterogeneous than 9 km SMAP
enhanced TBs. The median root mean square difference (RMSD) between 3 km SMAP/CYGNSS
TBs and 9 km SMAP TBs is 3.03 K. Additionally, 3 km SMAP/CYGNSS TBs capture expected NSSM
patterns on the landscape. Lower (more negative) β values yield greater spatial heterogeneity in
SMAP/CYGNSS TBs and are generally found in areas with low topographic roughness (<350 m),
moderate NSSM variance (~0.01–0.0325), low-to-moderate mean annual precipitation (~0.25–1.5 m),
and moderate mean Normalized Difference Vegetation Indices (~0.2–0.6). β values are lowest in
croplands and grasslands and highest in forested and barren lands.

Keywords: brightness temperature; downscaling; CYGNSS; SMAP; GNSS-R

1. Introduction

NASA’S Soil Moisture Active Passive (SMAP) mission was launched in January of
2015 with the goal of providing 9 km near surface soil moisture (NSSM) retrievals with
high accuracy, global coverage, and a brief revisit time. With an effective sensing depth of
~0–5 cm, the SMAP L-band microwave radiometer produces high-sensitivity brightness
temperatures (TBs) with spatial resolutions of ~40 km [1]. By merging the ~40 km TBs with
3 km L-band radar data, SMAP retrieved 3 km and 9 km NSSM [2]. Unfortunately, the
SMAP radar transmitter malfunctioned in July of 2015, and only ~2.5 months of active-
passive NSSM were retrieved. The SMAP team then created an alternative active-passive
NSSM product, using Sentinel-1A/Sentinel-1B C-band Synthetic Aperture Radar (SAR)
data. While this product has a spatial resolution of 1–3 km, full global coverage is only
achieved every 12 days [3].

NSSM measurements with both fine spatial scale and fine temporal scale are important
for weather forecasting, hydrologic modeling, drought monitoring, and flood prediction [4].
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While a variety of remotely sensed NSSM products are available, they generally have either
fine spatial resolution or fine temporal resolution, but not both. Microwave radiometers,
like SMAP and Soil Moisture and Ocean Salinity (SMOS) [5], retrieve NSSM at coarse
spatial resolution (~40 km) and fine temporal resolution (~2–3 days). Microwave synthetic
aperture radar (SAR), like Sentinel-1 [6] and the upcoming NASA-ISRO SAR (NISAR)
mission [7], retrieve NSSM at fine spatial resolution (dozens of meters to 1 km) but coarse
temporal resolution (~6–12 days). There is still a need for NSSM products with both fine
spatial scale and fine temporal scale.

We developed an algorithm to downscale SMAP TBs using Cyclone Global Navigation
Satellite System (CYGNSS) reflectivity data. The purpose of downscaling SMAP TBs is to
represent the spatial heterogeneity of TB at a finer scale than possible via passive microwave
data alone, with the end goal of developing a 3 km NSSM product. In this paper, we discuss
the SMAP/CYGNSS TB downscaling algorithm, including the complexities involved in
collocating SMAP and CYGNSS data. We also investigate the factors that affect the spatial
variability of downscaled SMAP/CYGNSS TBs and analyze which types of landscapes
produce the most and least spatially heterogeneous TBs. Finally, we discuss the primary
sources of uncertainty associated with downscaled SMAP/CYGNSS TBs. Deriving NSSM
from SMAP/CYGNSS TBs will be addressed in a separate paper.

Background

Each of the 8 CYGNSS observatories in orbit contains a bistatic radar receiver [8].
Bistatic radar receivers collect radar signals sent from separate sources, in this case Global
Positioning System (GPS) satellites, using a Signals-of-Opportunity retrieval method.
CYGNSS retrievals therefore create a pseudo random spatial coverage pattern (Figure 1),
over a latitudinal range of ±38◦ [8]. Like the SMAP radiometer, CYGNSS retrieves L-band
microwave signals with a sensing depth of ~0–5 cm. Therefore, downscaling SMAP us-
ing CYGNSS provides an advantage over downscaling SMAP using Sentinel, as Sentinel
retrieves C-band microwave signals with a sensing depth of ~0–2 cm [1].
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The spatial footprints of GNSS-R (Global Navigation Satellite System-Reflectometry)
retrievals depend on the roughness of the surface. Most GNSS-R observations are a
combination of coherent and incoherent reflections, with smooth, flat surfaces producing
coherent reflections and rough, highly vegetated, or topographically variable surfaces
producing incoherent reflections. For low-Earth orbit GNSS-R satellites, like CYGNSS,
coherent reflections have a theoretical footprint of ~0.5 km and incoherent reflections have a
theoretical footprint of ~25 km [9]. While it is possible that future research will allow for the
inclusion of a combination of incoherent and coherent scattering in our analysis of CYGNSS
reflectivity data, for the time being we assume there is a strong coherent component in the
reflectivity observations, and we correct the data accordingly. This assumption is based
upon observational evidence of a significant degree of spatial heterogeneity at relatively
small scales (~few km), even in the absence of inland surface water.

Assuming a coherently reflecting surface over land, the spatial footprint for a CYGNSS
retrieval is ~0.5 × 7 km or ~0.5 × 3.5 km. The elongation is due to the time integration of
the received signal. Before mid-2019, integration times were one second, which effectively
smeared the along-track footprint to 7 km. After mid-2019, integration times were reduced
to 0.5 s, which reduced the theoretical along-track footprint to 3.5 km [10]. We chose to use
a CYGNSS gridding scheme of 3 × 3 km, based on a study by [11]. They found that R2

and unbiased root mean square difference (ubRMSD) between SMAP and CYGNSS NSSM
increased and decreased, respectively, as the CYGNSS NSSM gridding size decreased from
18 km to 9 km to 3 km. 3 km also falls within the SMAP EASE-Grid 2.0 gridding scheme [1].

When CYGNSS data are gridded to 3 km (Figure 1), the statistical repeat period is
~8–14 days, varying with latitude [12]. The SMAP repeat period at low-to-mid latitudes
is 2–3 days [1]. If we choose a temporal collocation scheme that includes all CYGNSS
observations (Section 2.2.1), we can expect the average spatial coverage of 3 km CYGNSS
observations within 9 km SMAP observations to range from ~14–38%. We calculated this
by dividing the SMAP repeat period (2–3 days for full SMAP coverage) by the CYGNSS
repeat period (8–14 days for full CYGNSS coverage). We further discuss SMAP/CYGNSS
spatial coverage in Section 4.5.

In the past several years, multiple NSSM algorithms have been developed using
CYGNSS reflectivity data [13–17]. However, similar to SAR NSSM data, CYGNSS and other
GNSS-R NSSM data have lower accuracy than NSSM retrieved by radiometers, due to the
larger surface roughness and vegetation effects of radar at smaller spatial scales [18]. By
merging SMAP and CYGNSS data, we aim to create a high accuracy NSSM product with a
spatial scale of 3 km. To derive SMAP/CYGNSS NSSM, we first need to downscale SMAP
TBs using CYGNSS reflectivity data.

2. Materials and Methods

To calculate downscaled SMAP/CYGNSS TB, we first calculated CYGNSS reflec-
tivity. Next, we collocated SMAP and CYGNSS data, calculated the spatially-varying
slopes of the linear regressions between SMAP emissivity and CYGNSS reflectivity, and
used a variation of the SMAP active-passive TB downscaling algorithm to calculate 3 km
SMAP/CYGNSS TB.

2.1. Calculating CYGNSS Reflectivity

CYGNSS Level 1 data are delay Doppler maps (DDMs), which map the power of the
received signal with respect to time delay and Doppler shift [8]. We derived CYGNSS
reflectivity values using the peak power value of each DDM, from CYGNSS version 2.1 L1
data [10]. We excluded all CYGNSS data with signal-to-noise ratios lower than 2 dB. This
means the peak power values used to calculate reflectivity values were noticeably higher
than the noise floors of the DDMs [8].

The peak value of each CYGNSS DDM is the power received from the specular
reflection point and must be corrected for antenna gain, the bistatic range, the GPS transmit
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power, and incidence angle, as described by [14]. Assuming a coherent reflection, the
coherent component of the bistatic radar equation can be used:

Pr =
PtGt

4π(Rts + Rsr)
2

Grλ2
t

4π
Γs, (1)

where Pr is the uncorrected peak power of the DDM, Pt is the transmitted power, Gt is
the transmitting antenna gain, Gr is the receiving antenna gain, λt is the transmitted GPS
wavelength (0.19 m), Rts is the distance from the transmitting antenna to the specular
reflection point, Rsr is the distance from the specular reflection point to the receiving
antenna, and Γs is the effective surface reflectivity.

We calculated Γs by rearranging Equation (1) and converting all terms to dB:

Γs [dB] = 10logPr + 20log(Rts + Rsr) + 20log4π − 10logPt − 10logGt − 10logGr − 20logλt. (2)

Finally, we corrected for incidence angle using a modeled, theoretical formula of
reflectivity with respect to incidence angle [11,15]. Assuming accurate knowledge of the
terms in Equation (1), the final CYGNSS reflectivity (Γ) is only dependent on surface
properties, including surface roughness, vegetation, and the dielectric constant, which
depends on soil moisture.

2.2. Downscaling SMAP TB

In an effort that follows the SMAP mission’s original plan to downscale radiometer
TB retrievals using radar retrievals, we downscaled SMAP TBs using CYGNSS reflectivity
values. SMAP’s original active-passive algorithm includes cross-polarization data, which is
not available from CYGNSS retrievals. We therefore used a slightly modified version of the
baseline SMAP active-passive TB algorithm (Equation (3)) with no cross-polarization mea-
surements [1]. This algorithm merges coarse-scale (33 km, gridded at 9 km) SMAP TBs with
fine-scale (3 km) CYGNSS reflectivity values to create fine-scale (3 km) SMAP/CYGNSS
TBs, as depicted in Figure 2.

TBF = TBC + {βC × TS,C} × [ΓF − ΓC]. (3)

Here, TBF is the downscaled, SMAP/CYGNSS fine-scale brightness temperature, and
TBC is the SMAP coarse-scale brightness temperature. ΓF is fine-scale CYGNSS reflectivity
and ΓC is coarse-scale CYGNSS reflectivity. ΓF and ΓC are further discussed in Section 2.2.3.
βC is the coarse-scale, spatially varying slope of the linear regression of SMAP emissivity
and CYGNSS reflectivity values. Emissivity is defined as: e = TBC/TS,C, where TS,C is
coarse-scale effective soil temperature, or surface temperature.

We used vertically polarized SMAP enhanced TBs, gridded at 9 km with a native
resolution of approximately 33 km [19], for our TBC values [20]. We chose to use vertically
polarized SMAP TBs because the SMAP NSSM algorithm using vertically polarized TBs
outperforms the other NSSM algorithms [19]. We used the GMAO GEOS-5 (Global Mod-
eling and Assimilation Office, Goddard Earth Observing System version 5) effective soil
temperature data provided with the SMAP enhanced product for our TS,C values [20]. An
approximate equilibrium in temperature between the air, near-surface soil, and vegetation
at 6am increases the accuracy of derived NSSM [1]. We therefore only used 6am SMAP
enhanced TBs (from descending orbits) in this study. We gridded 3 km TBF using the
EASE-Grid 2.0.

The goal of downscaling SMAP TB is to represent the spatial heterogeneity of TB at
a finer scale than possible using passive microwave data alone. 3 km SMAP/CYGNSS
TB spatial heterogeneity is represented by spatial variations in TBF (Equation (3)) and is
influenced by two factors. (1) Large spatial variations in CYGNSS reflectivity will create
larger ∆Γ values (ΓF − ΓC), which will increase the spatial variations of TBF. CYGNSS
reflectivity varies due to natural spatial and temporal fluctuations in soil moisture, surface
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roughness, and vegetation. (2) More negative β values will also increase the spatial
variations of TBF. SMAP/CYGNSS β values are further discussed in Section 2.2.2.
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Figure 2. We merged 9 km SMAP TBs with CYGNSS reflectivity data, gridded at 3 km, to create 3 km
SMAP/CYGNSS TBs. 9 km SMAP TB data have a native resolution of approximately 33 km. To
collocate SMAP and CYGNSS data, we derived 33 km boxes for each SMAP 9 km grid cell [2,3].

Before we used Equation (3) to calculate TBF, we first collocated SMAP TB and
CYGNSS reflectivity data and calculated β.

2.2.1. Collocating SMAP TB and CYGNSS Reflectivity Data

We collocated SMAP TBs and CYGNSS reflectivity values in both space and time.
We spatially collocated the fine-scale variables using the 3 × 3 km EASE-Grid 2.0. We
spatially collocated the coarse-scale variables using 33 × 33 km boxes, centered on the
9 × 9 km EASE-Grid 2.0, as shown in Figure 2. Each 33 km box consists of 11 × 11.3 km
grid cells [2,3].

We masked out all 3 × 3 km grid cells containing semi-permanent open water. SMAP
enhanced TB data are water body corrected, which result in higher TBs for adjusted grid
cells [21]. Consequently, matching SMAP and CYGNSS data over regions of open water
will introduce error in the downscaled SMAP/CYGSS TBs. Using 30 m surface water
data derived from Landsat [22], available through the Global Surface Water Explorer, we
calculated the percentage of each 3 × 3 km grid cell that contained open surface water for
at least six months in 2018. We then implemented a water mask over regions that exceeded
5% semi-permanent open water.

The temporal collocation scheme we used is ± half the time between successive
SMAP observations. Since the time between SMAP observations is variable, the temporal
collocation period varies from approximately 1–6 days. As can be seen in Figure 3a, the
“between-SMAP” temporal collocation scheme captures all CYGNSS data without reusing
any CYGNSS data.
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Figure 3. All displayed data falls within the 33 km box centered on the 9 km grid cell at [31.2N,
98.7W]. In (b–d), the black borders are the 33 km box and the red squares are the 9 km grid cell.
(a): A month-long timeseries of collocated SMAP and CYGNSS data, where each temporal collocation
period is ±half the time between successive SMAP observations. The black lines denote the time
of each SMAP observation, and the alternating gray and white shaded regions show the temporal
collocation periods. The blue shaded region shows the collocation period depicted in (b–d). The
green squares are SMAP observations. The blue dots are CYGNSS observations. The red diamond is
the ΓC value shown in (c). (b): The ΓF map shows all the CYGNSS reflectivity values collocated with
the SMAP observation on 17 February 2020. (c): ΓC is the median of all ΓF and is used to calculate TBF

within the central 9 km grid cell. (d) The TBF map shows the 3 km SMAP/CYGNSS TBs calculated
using the displayed ΓC and ΓF values.

2.2.2. Calculating β

With more than five years of coinciding CYGNSS and SMAP data, there are sufficient
collocated time-series data to calculate β statistically. As described above, β is the spatially
varying slope determined via linear regression between SMAP emissivity and CYGNSS
reflectivity values. We chose to use emissivity, rather than TB, because TB is affected by
surface temperature, which fluctuates seasonally.

The β calculation is very important for the success and accuracy of the TB algorithm.
β is essentially the scaling factor that adjusts TBF to be higher or lower than TBC, so an
accurate representation of spatial variability depends on the estimated β value. Since
the dielectric constant of soil varies based on water content, which affects the microwave
emissivity of the soil [23], SMAP emissivity decreases as NSSM increases and CYGNSS
reflectivity increases as NSSM increases. Therefore, β values should theoretically be
negative, and positive β values are unrealistic. Lower, or more negative, β values can
produce larger differences between TBF and TBC, increasing spatial heterogeneity. As we
show below, calculating β is challenging in some situations.

We experimented with a variety of options before determining an optimal β calculation
method. Due to the ~8–14 day repeat period for CYGNSS at a 3 km scale [12], the CYGNSS
spatial coverage within a 33 km coarse-scale box on any given day is sparse. Therefore,
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daily CYGNSS observations within a 33 km box are not fully representative of its spatial
heterogeneity. To account for this, we aggregated SMAP and CYGNSS data over 45-day
periods. While longer periods provide slightly better correlation statistics, we chose this
aggregation interval as a compromise to balance (1) the need for full CYGNSS coverage
within 33 km boxes, (2) the need for ample data pairs for each linear regression, and (3) the
ability to capture seasonal variations in soil moisture.

To calculate β, we located all CYGNSS reflectivity values within each 33 km box
over 45-day periods and calculated the mean. Using the water mask described above,
we excluded all CYGNSS observations within 3 × 3 km grid cells that exceeded 5% semi-
permanent open water from our 45-day CYGNSS reflectivity means. We also calculated the
mean of all SMAP emissivity values for each 33 km box over 45-day periods. Whereby, we
calculated a single pair of SMAP and CYGNSS values for each 33 km box for each 45-day
period. Using a calibration period of 1 April 2017 through 31 December 2020, this creates
up to 29 data pairs for each linear regression.

SMAP emissivity and CYGNSS reflectivity data pairs and their corresponding β values
are vastly different from location to location (Figure 4). In the results, we examine how
these differences are affected by NSSM variability, mean annual precipitation, vegetation
density, and topographic roughness.
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Figure 4. Examples of 45-day SMAP emissivity and CYGNSS reflectivity data pairs and their
corresponding linear regressions in (a) India, (b) the United States, (c) China, (d) Australia, (e) Brazil
(Amazon Rainforest), and (f) Mauritania (Sahara Desert). Geographic coordinates, landcover class, β
value (slope), and correlation value (R) are provided for each.

2.2.3. Calculating TBF

An illustration of the steps we used to calculate the 3 km SMAP/CYGNSS TBs (TBF)
associated with a single 9 km SMAP enhanced TB (TBC) is provided in Figure 3b. First, we
calculated ΓC by finding the median of all CYGNSS reflectivity values with specular points
that fell within the appropriate 33 km box within ± half the time between successive SMAP
observations. Second, we identified which of these CYGNSS reflectivity values had specular
points that fell within the central 9 km grid cell and assigned these ΓF to their appropriate
3 km grid cells. On the rare occasion that 2 or more CYGNSS observations fell within the



Remote Sens. 2022, 14, 5262 8 of 23

same 3 km grid cell within ± half the time between successive SMAP observations, they
were averaged. Finally, using Equation (3), we calculated TBF for each ΓF. Regardless of
whether ΓF occurs on the same day as TBC, the output TBF are for the same day as TBC.

Figure 5 includes regional maps of all the parameters in the SMAP/CYGNSS TB
algorithm (Equation (3)).
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Figure 5. Regional maps [25–37N, 85–99W] of all the parameters in the SMAP/CYGNSS TB algorithm.
Each map is an aggregation of data from 1 June through 15 July 2020. (a) 33 km SMAP enhanced TB
(gridded at 9 km), TBC. (b) Slope of the linear regression between SMAP emissivity and CYGNSS
reflectivity, βC. (c) Effective surface temperature, TS,C. (d) 33 km CYGNSS reflectivity (gridded at
9 km), ΓC. (e) 3 km CYGNSS reflectivity, ΓF. (f) 3 km SMAP/CYGNSS TB, TBF.

2.3. Auxiliary Data

To better understand the global spatial distribution of SMAP/CYGNSS β values, we
compared β values with mean annual precipitation, mean NDVI, topographic roughness,
and landcover class. We describe the data, processing, and upscaling methodology used to
calculate each below.

We calculated global mean annual precipitation using monthly 0.1 × 0.1-degree
CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) and RFE2 (Na-
tional Oceanic and Atmospheric Administration Climate Prediction Center African Rainfall
Estimation Algorithm v2) rainfall data from 2001–2020, archived by FLDAS (Famine Early
Warning Systems Network Land Data Assimilation System) [24]. We then upscaled the
results to match our coarse-scale grid (33 km boxes, gridded at 9 km) using a linear averag-
ing method.

We calculated mean NDVI using monthly 0.05× 0.05-degree MODIS/Terra (Moderate
Resolution Imaging Spectroradiometer) NDVI data from 2001–2020 [25]. We then upscaled
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the results to match our coarse-scale grid (33 km boxes, gridded at 9 km) using a linear
averaging method.

We calculated topographic roughness using the root-mean-square (RMS) surface
height, derived from 90 m Shuttle Radar Topographic Mission (SRTM) digital elevation
model (DEM) data [26]. We calculated RMS surface height values to match our coarse-scale
grid (33 km boxes, gridded at 9 km) using the following equation:

topographic roughness =

√√√√ 1
N

N

∑
n=1
|xn − x|2. (4)

Here, xn is any given surface height value in the 33 km box, N is the total number of
surface height values in the 33 km box, and x is the mean value of surface heights within
the 33 km box.

We used annual 0.05 × 0.05-degree MODIS IGBP (International Geosphere-Biosphere
Programme) landcover class data [27]. We upscaled the MODIS IGBP data to match our
coarse-scale grids (33 km boxes, gridded at 9 km) using an areal-percent weighted average.
For each 33 km box, we calculated the areal-percent of overlap for each 0.05 × 0.05-degree
grid that overlapped or fell within the box. We multiplied the areal-percent weight by
the percent-coverage of the dominant landcover class for the 0.05 × 0.05-degree grid and
added it to a running sum for that landcover class. The largest landcover class running
sum was assigned as the dominant landcover class of the 33 km box.

3. Results

Using the SMAP/CYGNSS TB downscaling algorithm (Equation (3)), TB spatial
heterogeneity depends on the spatial variations in CYGNSS reflectivity (∆Γ) and is scaled
by β. We first present SMAP/CYGNSS TB spatial heterogeneity results, then we discuss
the spatial patterns in ∆Γ values and β values. Finally, we present 3 km SMAP/CYGNSS
TB results.

3.1. SMAP/CYGNSS TB Spatial Heterogeneity

As expected, 3 km SMAP/CYGNSS TBs exhibit greater spatial variability than 9 km
SMAP enhanced TBs. Comparing the 3 km SMAP/CYGNSS TBs associated with each
9 km SMAP TB allowed us to assess the spatial heterogeneity of 3 km SMAP/CYGNSS
TBs. We calculated the RMSD between 9 km SMAP TBs and the corresponding 3 km
SMAP/CYGNSS TBs for each SMAP observation with concurrent CYGNSS data during
2020. We then calculated the median RMSD TB for each 9 km grid cell. The median RMSD
between 9 km SMAP TBs and 3 km SMAP/CYGNSS TBs range from 0.06 to 12.63 K (5th to
95th percentile) with a median of 3.03 K (Figure 6c). Many of the near-zero RMSD TBs are
due to likely-erroneous, near-zero β values (discussed below, in Section 3.3). We can more
accurately describe the spatial heterogeneity of 3 km SMAP/CYGNSS TBs by eliminating
the near-zero RMSD TBs caused by near-zero β values. By only including β values with
correlations less than −0.4, we exclude near-zero β values (Figure 6b). We discuss the
reasons for choosing a correlation cutoff of −0.4 in Section 4.3. When only considering grid
cells with β values with R < −0.4, the median annual RMSD between 9 km SMAP TBs and
3 km SMAP/CYGNSS TBs is 5.16 K (Figure 6c).

3.2. Spatial Patterns in ∆Γ Values

Median ∆Γ values (ΓF − ΓC) range from 0.19 to 2.46 dB (5th to 95th percentile) with a
median of 1.21 dB (Figure 6a). We calculated the median magnitude of ∆Γ for each SMAP
observation in 2020. Then, we calculated the median ∆Γ value for each 9 km grid cell.
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Figure 6. (a) Map and histograms of median ∆Γ values (described in Section 3.2), calculated using
data from 2020. (b) Map and histograms of SMAP/CYGNSS β values (described in Section 2.2.2).
(c) Map and histograms of the median RMSD between 9 km SMAP TBs and 3 km SMAP/CYGNSS
TBs (described in Section 3.1), calculated using data from 2020. Gray histograms include all data. Red
histograms only include data for 9 km grid cells with β values where R < −0.4 (Section 4.3).

The highest median ∆Γ values are found in north-central Mexico, southeast Asia,
Japan, and western Australia. ∆Γ values are zero and near-zero in regions with high
topographic roughness and in densely forested areas, due to low signal-to-noise ratios
in the CYGNSS DDMs. The high median ∆Γ values seen over the Amazon and Central
African rainforests are water signals, sometimes from beneath the canopy, and essentially
map the regional tributaries [28]. Looking closely at these densely forested regions, ∆Γ
values are zero or near-zero everywhere besides the regional tributaries.

We expect ∆Γ values to be consistently low in dry and barren areas, due to limited
changes in soil moisture and vegetation. However, median ∆Γ values fluctuate over the
Sahara Desert. This might be due to sand dunes, rock outcrops, or other topographic and
surface roughness variations throughout the desert.

The global spatial patterns in median ∆Γ (Figure 6a) are not very similar to the spatial
patterns in the median RMSD between 9 km SMAP TBs and 3 km SMAP/CYGNSS TBs
(Figure 6c). The correlation between median ∆Γ and median RMSD TB is 0.45. This suggests
∆Γ is not the primary source of SMAP/CYGNSS TB spatial heterogeneity, and instead β is
the dominant factor.
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3.3. Spatial Patterns in SMAP/CYGNSS β Values

SMAP/CYGNSS β values (the slopes of the linear regressions of SMAP emissivity
and CYGNSS reflectivity) range from 0.002 to −0.021 dB−1 (5th to 95th percentile) with a
median of−0.007 dB−1 (Figure 6b). The global spatial patterns in β are similar to the spatial
patterns in the median RMSD between 9 km SMAP TBs and 3 km SMAP/CYGNSS TBs
(Figure 6c). Regions with low β tend to have high RMSD TBs, and regions with near-zero
β tend to have near-zero RMSD TBs. The correlation between β values and median RMSD
TBs is −0.71. Therefore, β (not ∆Γ) is the primary source of SMAP/CYGNSS TB variations.

SMAP emissivity and CYGNSS reflectivity are strongly correlated in many areas
(Figure 7a). The median global correlation is−0.58, while the statistical mode of correlations
is about −0.91. Linear regressions with near-zero correlations typically yield near-zero or
positive β values (Figure 7a,b). Given the SMAP/CYGNSS TB algorithm (Equation (3)),
β values of zero necessitate that TbF will equal TbC. Therefore, near-zero β values yield
low TB spatial heterogeneity. Additionally, as explained in Section 2.2.2, positive β values
are unrealistic. Near-zero and positive β values occur in dry areas (e.g., Sahara Desert),
forested areas (e.g., Amazon Rainforest), and areas with high topographic roughness (e.g.,
Andes Mountains). We further investigate the factors that control the spatial patterns in β

values below.

3.3.1. Relationships between Mean Annual Precipitation, NSSM Variability and β Values

SMAP emissivity and CYGNSS reflectivity are often poorly correlated in dry areas
(Figure 7a,d,e). This is because dry regions have little NSSM variability, and therefore
little-to-no temporal variation in emissivity or reflectivity (Figure 4f).

The impact of precipitation and NSSM variability on SMAP/CYGNSS β values can
be illustrated by examining the seasonal cycle of β for a single 33 km box (Figure 8). β

is most negative (and correlation best) during the wet season, when NSSM is fluctuating
due to rainfall events. In contrast, periods with no precipitation and low NSSM variabil-
ity produce near-zero β values and poor correlations. We calculated seasonal β values
using SMAP/CYGNSS data pairs that were temporally collocated using ± half the time
between successive SMAP observations. The 45-day SMAP/CYGNSS β value (Figure 8b),
calculated using the methodology described in Section 2.2.2, is closer to the seasonal β
values generated during periods with higher precipitation and higher NSSM variability.
This indicates that our 45-day β values provide an adequate estimate of the annual range
of coarse-scale NSSM variability.

The relationship between SMAP/CYGNSS β values and NSSM variability is shown
in Figure 9a. We represented NSSM variability by calculating the variance through
time of SMAP NSSM for each 9 km grid cell during 2020. The relationship between
SMAP/CYGNSS β values and FLDAS mean annual precipitation (described in Section 2.3)
is shown in Figure 9b. As expected, regions with very low NSSM variance (<0.0025) and
very low mean annual precipitation (<0.25 m) have near-zero and positive β values. In
contrast, the most negative β values are found in regions with moderate NSSM variance
(~0.01–0.0325) and low-to-moderate mean annual precipitation (~0.25–1.5 m). The near-
zero β values found in regions with high mean annual precipitation might be due to a lack
of NSSM variability, if the soils are always wet, or could be due to increasing vegetation
density, which is discussed below.

3.3.2. Relationship between NDVI and β Values

SMAP emissivity and CYGNSS reflectivity are often poorly correlated in forested
areas (Figure 6a,f) due to a lack of significant changes in both SMAP emissivity and
CYGNSS reflectivity (Figure 4e). This is because the dense vegetation in forests interferes
with microwave sensing of the soil. We used MODIS/Terra mean NDVI (described in
Section 2.3) to compare SMAP/CYGNSS β values with vegetation density.
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Figure 7. (a) Correlations for 45-day SMAP emissivity and CYGNSS reflectivity linear regressions (β
values). (b) SMAP/CYGNSS β values. (c) SMAP active-passive β values. Mean of daily SMAP β
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FLDAS precipitation data (described in Section 2.3). (f) Mean NDVI, calculated using MODIS/Terra
data (described in Section 2.3). (g) 2020 MODIS IGBP landcover class. A landcover class key is
included in the second figure in Section 3.3.1.
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Figure 8. A depiction of the effect that NSSM variability has on β values. All displayed data falls
within the 33 km box centered on the 9 km grid cell at [36.1N, 119.6W]. (a) Bi-monthly SMAP
emissivity and CYGNSS reflectivity data, collocated using ±half the time between successive SMAP
observations, and their corresponding linear regressions. The seasonally varying β values are
included in each plot. The SMAP/CYGNSS data points are colored to match the timeseries in (c).
(b) 45-day SMAP emissivity and CYGNSS reflectivity data (as described in Section 2.2.2) and the
corresponding β value. (c) SMAP NSSM timeseries with FLDAS monthly rainfall data. The NSSM
data points are colored bi-monthly, to match the scatter plots in (a).

The relationship between SMAP/CYGNSS β values and mean NDVI is shown in
Figure 9c. As expected, areas with high mean NDVI values (>0.8) have near-zero SMAP/CY-
GNSS β values. Areas with low mean NDVI values (<0.1) also have near-zero SMAP/CYG-
NSS β values, because barren areas are usually very dry. In contrast, the most negative
SMAP/CYGNSS β values, which ultimately lead to the greatest spatial heterogeneity in
downscaled TBs, are found in areas with moderate mean NDVI values (~0.2–0.6).
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Figure 9. The number of 9 km grid cells (n-values) used to calculate each boxplot are included above
each subplot. (a) Relationship between SMAP/CYGNSS β values and annual SMAP NSSM variance.
Each boxplot spans a NSSM variance range of 0.0025. (b) Relationship between SMAP/CYGNSS β

values and FLDAS mean annual precipitation. Each boxplot spans a precipitation range of 0.25 m.
(c) Relationship between SMAP/CYGNSS β values and MOIDIS/Terra mean NDVI. Each boxplot
spans an NDVI range of 0.05. (d) Relationship between SMAP/CYGNSS β values and SRTM
topographic roughness. Each boxplot spans a topographic roughness range of 50 m. (e) Relationship
between SMAP/CYGNSS β values and MOIDIS IGBP landcover class.

3.3.3. Relationship between Topographic Roughness and β Values

SMAP emissivity and CYGNSS reflectivity are often poorly correlated in areas with
high topographic roughness. Topographic roughness increases the uncertainty in both
passive and active microwave remote sensing observations, due to increased scattering of
the signal.

The positive relationship between SMAP/CYGNSS β values and SRTM topographic
roughness (described in Section 2.3) is shown in Figure 9d, with β values approaching
zero as topographic roughness increases. Since both dry and densely vegetated areas have
near-zero β values, regardless of topographic roughness, we did not include any 9 km grid
cells with mean annual precipitation less than 0.25 m or mean NDVI greater than 0.8 in our
topographic roughness analysis.
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3.3.4. Landcover Class and β Values

SMAP/CYGNSS β values also vary with MODIS IGBP landcover class (described in
Section 2.3), as shown in Figure 9e. We only included β values in this analysis for 9 km
grid cells that did not change landcover class during the period of our linear regression
calculations (April 2017 through December 2020) and for 9 km grid cells that were greater
than 90% the predominant landcover class by area. Since high topographic roughness
produces poorly correlated SMAP/CYGNSS linear regressions and is not dependent on
landcover class, we did not include any 9 km grid cells with topographic roughness values
greater than 350 m in our landcover class analysis. Areas with topographic roughness
greater than 350 m have β values of zero or higher more than 25% of the time (Figure 9d).
We did not include landcover classes that are masked out in NSSM products (0: water,
11: permanent wetland, 13: urban and built-up, and 15: snow and ice), nor did we
include landcover classes without any 9 km grid cells meeting the criteria explained above
(3: deciduous needleleaf forest).

β values are lowest in croplands (Figure 4a) and grasslands (Figure 4b) and highest in
forests (Figure 4e) and barren lands (Figure 4f). Many of the landcover class and β value
relationships can be explained by variations in NSSM variability, mean annual precipitation,
and mean NDVI throughout landcover classes (Figure 7d–g). We consider how to untangle
these confounding effects in the discussion.

3.3.5. Comparison with SMAP Active-Passive β Values

Figure 6b,c compare SMAP/CYGNSS β values and SMAP active-passive β values.
While some spatial disagreements exist, mainly in Australia, the United States, and the Mid-
dle East, general spatial agreement can be seen across most of the globe. Complete spatial
agreement between β values is not expected, as NSSM variability affects β (Section 3.3.1).
Since there is no temporal overlap in SMAP active-passive data and CYGNSS data, and
the calculation methods are not the same, a direct comparison of β values is not possible.
The SMAP active-passive β values were calculated from 15 April–7 July 2015, and our
SMAP/CYGNSS β values were calculated using data from April 2017–December 2020.
The ~2.5 months of time-series data used to calculate SMAP active-passive β values is
not representative of annual precipitation and NSSM variability, which may have caused
incomplete β estimations, especially in arid regions [2].

3.4. 3 km SMAP/CYGNSS TBs

3 km SMAP/CYGNSS TBs include significantly more spatial detail than 9 km SMAP
TBs and capture expected soil moisture patterns on the landscape. An example near
New Delhi, India (Figure 10) shows a decrease in soil moisture over croplands as time
progresses from August to December. The drying of the croplands is evident in both 3 km
SMAP/CYGNSS TBs (Figure 10g,h) and 9 km SMAP TBs (Figure 10d,e). However, the
spatial pattern of the more productive croplands is obvious in 3 km SMAP/CYGNSS TBs
but not discernible in 9 km SMAP TBs.

The 3 km SMAP/CYGNSS TB maps shown in Figure 10g–h include data that is
aggregated over 60 days. As such, adjacent 3 km TBs may be derived from SMAP/CYGNSS
data observed on the same day, 5 days apart, or as many as 59 days apart. This introduces
noise in the maps. We aggregated SMAP/CYGNSS TBs over 60 days due to sparse daily
spatial coverage. Options for increasing daily spatial coverage in SMAP/CYGNSS TBs are
discussed in Section 4.5.
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Figure 10. A comparison of 9 km SMAP TBs and 3 km SMAP/CYGNSS TBs near New Delhi, India
[28.25–29.5N, 75.5–77E]. (a) SMAP soil moisture timeseries for a single 9 km grid cell (location denoted
by a black star in (d,e,g,h) from 1 August 2020 to 30 November 2020. (b) Landsat image aggregated
from 15 September 2020 to 10 October 2020. This is the only relevant timeframe not obscured by
clouds. (c) Regional [15–30N, 66–84E] 9 km SMAP TBs averaged from 1 August 2020 to 30 November
2020. The red box shows the area displayed in (d,e). (d) 9 km SMAP TBs averaged from 1 August
2020 to 30 September 2020. (e) 9 km SMAP TBs averaged from 1 October 2020 to 30 November
2020. (f) Regional [15–30N, 66–84E] 3 km SMAP/CYGNSS TBs aggregated from 1 August 2020 to
30 November 2020. The red box shows the area displayed in (g,h). (g) 3 km SMAP/CYGNSS TBs
aggregated from 1 August 2020 to 30 September 2020. (h) 3 km SMAP/CYGNSS TBs aggregated
from 1 October 2020 to 30 November 2020.

4. Discussion
4.1. Spatial Relationships Affecting β Values

We demonstrated the existence of spatial relationships between SMAP/CYGNSS β

values and mean annual precipitation, NSSM variability, mean NDVI, and topographic
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roughness in Section 3.3. However, which of these relationships are most important for
determining β values? We synthesize the SMAP/CYGNSS β results below.

High topographic roughness decreases the correlation between emissivity and reflec-
tivity, regardless of mean annual precipitation, NSSM variability, or mean NDVI. This does
not mean that topographic roughness is a good indicator of β values, but rather that the
quality of SMAP and CYGNSS observations is reduced in areas with high topographic
roughness, due to increased scattering of the microwave signal.

While NSSM variability is related to mean annual precipitation, NSSM variability is
more indicative of β values for two major reasons. First, both low and high mean annual
precipitation can create areas with low NSSM variability. Second, NSSM variability can be
affected by other factors, including seasonal flooding, irrigation, and the water and energy
balance of the surface.

The two most important factors for determining β values are therefore NSSM vari-
ability and mean NDVI. β values generally decrease with increasing NSSM variability
(Section 3.3.1). Additionally, β values increase as mean NDVI increases from moderate-
to-high values, due to increased vegetation density (Section 3.3.2). NSSM variability is a
better predictor of β values for areas with low-to-moderate mean NDVI, and mean NDVI
is a better predictor of β values for areas with high mean NDVI.

The spatial relationships between SMAP/CYGNSS β values and mean annual precipi-
tation, NSSM variability, and mean NDVI are also important when considering the β values
produced by different landcover classes. Landcover classes with high mean NDVI (forests)
and low mean annual precipitation and NSSM variability (barren areas) tend to produce
poorly correlated linear regressions and near-zero β values. Alternatively, landcover classes
with low-to-moderate mean annual precipitation, moderate NSSM variability, and moder-
ate mean NDVI (shrublands, savannas, grasslands, and croplands) tend to produce well
correlated linear regressions with more negative β values.

Similar findings are presented in [30]. This study on the relationship between SMAP
radar backscatter and SMAP radiometer TB found that linear correlations are best in
grasslands and croplands and worst in forests and barren areas. They also found that linear
correlations are best for moderate NDVI, with worse correlations for low and high NDVI,
and that linear correlations improve as soil moisture variability increases.

4.2. Sources of Temporal Fluctuations in β Values

The temporal fluctuations in NSSM variability within 9 km grid cells significantly
impact SMAP/CYGNSS β values (Section 3.3.1). Figure 8 demonstrates that β values
vary significantly throughout the year, driven by seasonal changes in precipitation and
NSSM variability. While seasonal changes in vegetation and surface roughness might
also affect β values [3], these signals would likely be dwarfed by seasonal changes in
NSSM variability. Since SMAP/CYGNSS β values erroneously approach zero during
the dry season, which could yield less spatial heterogeneity than exists, we chose not to
use seasonally fluctuating β values. We therefore did not explore any possible temporal
relationships between vegetation or surface roughness and β values.

4.3. Correcting Problematic β Values

Near-zero SMAP/CYGNSS β values yield low TB spatial heterogeneity, and positive
β values are unrealistic. Before calculating global SMAP/CYGNSS TB and NSSM, we
plan to replace erroneous near-zero and positive SMAP/CYGNSS β values with realistic,
representative β values. Since most near-zero and all positive β values have poor (near-zero
or positive) correlations, we will implement a correlation cutoff to determine which β values
to replace. We chose a preliminary correlation cutoff of −0.4, to ensure the replacement of
erroneous β values while minimizing the number of replaced β values. Future work will
include testing a variety of correlation cutoffs during NSSM validation.

Unlike the SMAP radar, CYGNSS does not include any cross-polarization data, so we
are unable to replicate the regression model between cross-polarization backscatter (repre-
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sentative of vegetation level) and β used to create representative β values for the SMAP
active-passive product [2]. Instead, we will use the relationships between SMAP/CYGNSS
β values and mean annual precipitation, mean NDVI, and NSSM variability to determine
representative β values.

Since the variation in β values produced by different landcover classes can be ex-
plained by the relationships between β values and mean annual precipitation, mean NDVI,
and NSSM variability (Section 4.1), we will use landcover classes to create representative
β values. Unfortunately, the correlation between β values and landcover class is not par-
ticularly high, as can be seen by the spread of the box and whisker plots in Figure 9e. We
therefore removed β values with correlations greater than −0.4 from the analyses. We
calculated the median β value for each landcover class, including only 9 km grid cells with
β values with R < −0.4. We then replaced β values where R > −0.4 with their median
landcover class β values. Since MODIS landcover class changes annually, SMAP/CYGNSS
β values will change annually. Figure 11 shows a comparison of uncorrected and corrected
β values.
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4.4. TB Spatial Heterogeneity Comparisons

The goal of downscaling SMAP TB is to represent the spatial heterogeneity of TB
at a finer scale than possible via passive microwave data alone. While we expect to see
increased spatial heterogeneity at the 3 km scale compared to the 9 km or 33 km scale, the
amount of additional heterogeneity depends on various landscape attributes. To gauge
the accuracy of 3 km SMAP/CYGNSS TB spatial heterogeneity, we compare it to other TB
datasets with similar spatial resolutions.

SMAP uses Passive Active L-band Sensor (PALS) flights during their calibration and
validation campaigns. While no PALS flights are both spatially and temporally coinci-
dent with CYGNSS data, we can still use PALS data as a general comparison. During the
SMAPVEX15 campaign in southeastern Arizona between 1 and 18 August 2015, the stan-
dard deviation of PALS 1 km TBs within 3 separate 36 km pixels during 7 overpasses varied
from about 2–13 K [31]. We calculated the standard deviation of 3 km SMAP/CYGNSS
TBs within 33 km boxes covering approximately the same geographic area in Arizona
between 1 and 31 August 2018 and found a range of about 0–16.9 K (5th–95th percentile).
These TB standard deviations are fairly similar. We do not expect an exact match, as we are
comparing two different scales (1 km vs. 3 km TBs) over 2 different years.
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We also compared 3 km SMAP/CYGNSS TB spatial heterogeneity to 3 km SMAP/Sentinel
TB spatial heterogeneity. Since CYGNSS retrieves L-band microwave signals and Sentinel
retrieves C-band microwave signals, and CYGNSS and Sentinel observations are generally not
concurrent, we do not expect an exact match. However, the spatial heterogeneity of different
downscaled 3 km SMAP TBs should be similar.

We calculated the RMSD between 9 km SMAP TBs and the corresponding 3 km
SMAP/CYGNSS or SMAP/Sentinel TBs [32] for each SMAP observation with concur-
rent CYGNSS or Sentinel data between 1 April and 30 June 2018. We then calculated
median RMSD TBs for each 9 km grid cell. We only included 9 km grid cells with both
SMAP/CYGNSS and SMAP/Sentinel results in our analysis. The RMSD between 3 km
SMAP/Sentinel TBs and 9 km SMAP TBs range from 0.8 to 11.7 K (5th–95th percentile)
with a median of 3.7 K (Figure 12a). The RMSD between 3 km SMAP/CYGNSS TBs and
9 km SMAP TBs range from 0.06 to 12.1 K (5th–95th percentile) with a median of 2.7 K
(Figure 12b). The lower median RMSD between SMAP/CYGNSS and SMAP TBs is pri-
marily due to near-zero SMAP/CYGNSS β values. When we recalculate SMAP/CYGNSS
TBs using landcover class corrected β values (Section 4.3), the RMSD between 9 km SMAP
TBs and 3 km SMAP/CYGNSS TBs range from 0.7 to 12.9 K (5th–95th percentile) with a
median of 3.7 K (Figure 12b). The similarity between SMAP/CYGNSS and SMAP/Sentinel
3 km TB spatial heterogeneity is promising.
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Figure 12. (a) RMSD between 3 km SMAP/Sentinel TBs and 9 km SMAP TBs. (b) RMSD between 3 km
SMAP/CYGNSS TBs and 9 km SMAP TBs. Gray histogram TBs were calculated using uncorrected β

values. Red histogram TBs were calculated using landcover class corrected β values. The remaining
zero-value RMSD TBs in the β-corrected histogram are due to ∆Γ values of zero, which occur when
ΓC is calculated using a single CYGNSS reflectivity value (Section 4.6.1).

4.5. SMAP/CYGNSS TB Spatial Coverage

SMAP/CYGNSS TBs do not provide full spatial coverage every 2–3 days, due to the
~8–14 day repeat period of CYGNSS observations at the 3 km scale. Low latitudes and areas
where CYGNSS data have low signal-to-noise (i.e., forests and mountains) have worse
spatial coverage. Higher latitudes and areas where CYGNSS data have high signal-to-noise
(i.e., grasslands and croplands) have better spatial coverage.

The CYGNSS spatial coverage for each SMAP observation ranges from 3.0 to 28.3%
(5th to 95th percentile) with a median of 15.5%. We calculated percent coverage for each
9 km SMAP TB during 2020 within ±35◦ latitude in non-mountainous and non-forested
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areas, using the associated 3 km SMAP/CYGNSS TBs. We then calculated the mean percent
coverage for each 9 km grid cell.

There are two options for improving SMAP/CYGNSS TB spatial coverage. (1) We
could produce both 3 km and 9 km SMAP/CYGNSS TBs. The 3 km TBs would include
greater spatial heterogeneity, but the 9 km TBs would have better spatial coverage. Since the
native resolution of SMAP enhanced TBs is ~33 km (gridded at 9 km), 9 km SMAP/CYGNSS
TBs would still provide improved spatial heterogeneity. (2) We could use spatial inter-
polation techniques to fill the gaps. We could either (a) use pre-interpolated CYGNSS
data, (b) interpolate 3 km SMAP/CYGNSS TBs, or (c) interpolate 3 km SMAP/CYGNSS
NSSM. In each case, we could achieve full spatial coverage every 2–3 days, but precipitation
patterns on the landscape would be less precise, which may lead to reduced NSSM accu-
racy. Future work will include analyzing the pros and cons of these options for improving
SMAP/CYGNSS spatial coverage.

A final note: GNSS-R spatial coverage will likely improve in future years, due to larger
constellation sizes and a higher number of received signals [33,34].

4.6. SMAP/CYGNSS TB Uncertainties

Multiple uncertainties exist related to the SMAP/CYGNSS TB algorithm. Some of
these uncertainties are due to the difficulties of collocating SMAP and CYGNSS data, and
others are inherent in CYGNSS data and the TB algorithm.

4.6.1. SMAP/CYGNSS Collocation Uncertainties

There are a few uncertainties related to the collocation of SMAP and CYGNSS data.
First, since the temporal collocation period varies from 1–6 days, the chance of rainfall
occurring between collocated SMAP and CYGNSS observations is non-negligible. Rainfall
between collocated observations could lead to reduced accuracy in downscaled TBs, since
the SMAP and CYGNSS observations being merged would not be representative of the
same NSSM. Second, derived ΓC are not always representative of the spatial heterogeneity
within a 33 km box. Due to the pseudo random spatial coverage of CYGNSS, some ΓC are
calculated using a single CYGNSS reflectivity value, while other ΓC are calculated using
tens of reflectivity values. When ΓC is calculated using a single reflectivity value, ∆Γ will
always equal zero. Third, the moving window averaging method used to calculate ΓC,
based on the coarse-scale gridding scheme, introduces bias into the downscaling algorithm.
When the 3 km SMAP/CYGNSS TBs are upscaled, they do not always equal the 9 km
SMAP TBs.

4.6.2. CYGNSS Reflectivity Uncertainties

Uncertainty in CYGNSS observations also introduces uncertainty into SMAP/CYGNSS
TBs. CYGNSS data are calibrated to optimize retrievals over the ocean surface, which does
not necessarily translate to an optimization of retrievals over land. In addition, there is
uncertainty in some of the ancillary variables in the bistatic radar equation. Most promi-
nently, the GPS effective isotropic radiated power (EIRP) for the v2.1 data is estimated from
a lookup table and does not consider variations in transmit power over time or space. Some
of the assumptions we made also introduce uncertainty into the reflectivity values: (1) the
assumption that CYGNSS retrievals over land are based on completely coherent reflections;
and (2) the 3 × 3 km gridding of CYGNSS reflectivity values, which does not account for
the elongated footprint of CYGNSS observations. Future work will include estimating a
bulk uncertainty for CYGNSS reflectivity values and propagating that uncertainty to TB
and NSSM.

4.6.3. SMAP/CYGNSS TB Algorithm Uncertainties

Near-zero and positive β values, generally in areas with poorly correlated SMAP emis-
sivity and CYGNSS reflectivity observations, are likely the greatest source of uncertainty
in SMAP/CYGNSS TBs. While we will attempt to reduce some of this uncertainty by
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replacing poorly correlated β values with representative values (Section 4.3), an incorrect
β value has the potential to create significant uncertainty in calculated TBs. If we only
consider β values with R < −0.4 (Section 4.3 & Figure 6b), the standard deviation of β
values is 0.006 dB−1. Using 5th to 95th percentile ranges in β, Ts, and ∆Γ, we determined
that the potential RMSE in TBs based on β errors of ± 0.006 dB−1 is ~3.5 K.

Other SMAP/CYGNSS TB sources of uncertainty include seasonal fluctuations in
surface water not captured by our water mask, and uncertainty in surface temperature
data. No water mask is perfect, and some TB uncertainty is expected near water bodies
that fluctuate seasonally. Uncertainty related to surface temperature is primarily due
to its coarse resolution. For consistency, we used the same surface temperature data as
SMAP (GMAO GEOS-5), which has a native resolution of 0.25 × 0.3125-degrees. This
coarse spatial resolution does not adequately capture the spatial heterogeneity of surface
temperature on the landscape. Using a finer spatial resolution surface temperature would
likely improve our downscaling algorithm and will be considered in the future.

5. Conclusions

We merged SMAP enhanced TBs and CYGNSS reflectivity values to create 3 km
SMAP/CYGNSS TBs. Future work includes using 3 km SMAP/CYGNSS TBs to create a
3 km NSSM product.

Globally, the correlations between SMAP emissivity and CYNGSS reflectivity val-
ues are good (more negative), except in forested areas, barren areas, or areas with high
topographic roughness. In this way, SMAP/CYGNSS β values are similar to SMAP active-
passive β values [2].

Lower β values yield greater spatial heterogeneity in SMAP/CYGNSS TBs. Areas
with very low mean annual precipitation and NSSM variability have poorly correlated
linear regressions with near-zero β values. Areas with high topographic roughness or high
mean NDVI also have poorly correlated linear regressions with near-zero β values. Well
correlated linear regressions with lower (more negative) β values are generally found in
areas with low topographic roughness (<350 m), moderate NSSM variance (~0.01–0.0325),
low-to-moderate mean annual precipitation (~0.25–1.5 m), and moderate mean NDVI
(~0.2–0.6). β values are lowest in croplands and grasslands and highest in forested and
barren lands.

3 km SMAP/CYGNSS TBs are more spatially heterogenous than 9 km SMAP TBs and
capture expected soil moisture patterns on the landscape. The median RMSD between
3 km SMAP/CYGNSS TBs and 9 km SMAP TBs is 3.03 K. The spatial heterogeneity of 3 km
SMAP/CYGNSS TBs is similar to the spatial heterogeneity of 3 km SMAP/Sentinel TBs.

In upcoming years, GNSS-R constellation sizes will increase, along with the number of
received signals [33,34]. Additional GNSS-R constellations will provide more opportunities
for downscaled NSSM products. Hopefully, the SMAP/CYGNSS TB algorithm can serve
as a model for future downscaling efforts.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14205262/s1: A netcdf file containing β values, their corre-
sponding correlations, and median RMSD TB and ∆Γ values for 2020 (as shown in Figures 6 and 7).
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netcdf file. SMAP data is publicly available in the NSIDC DAAC [20,29,32]. CYGNSS data is publicly
available in the PO.DAAC [10]. Downscaled SMAP/CYGNSS TB data will be publicly available with
the downscaled SMAP/CYGNSS NSSM product in the future and are available on request from the
corresponding author.
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