
Improving SWE Estimation With Data Assimilation: The
Influence of Snow Depth Observation Timing
and Uncertainty
Eric J. Smyth1 , Mark S. Raleigh1,2,3 , and Eric E. Small1

1Department of Geological Sciences, University of Colorado, Boulder, CO, USA, 2Cooperative Institute for Research in
Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA, 3National Snow and Ice Data Center
(NSIDC), University of Colorado, Boulder, CO, USA

Abstract Snow depth observations can be leveraged with data assimilation (DA) to improve estimation
of snow density and snow water equivalent (SWE). A key consideration for mission and campaign design is
how snow depth retrieval characteristics (including observation timing/frequency and sampling error)
influence SWE accuracy and uncertainty in a DA framework. To quantify these effects, we implement a
particle filter (PF) assimilation technique to assimilate depth and validate this approach against observed
snow density and SWE at 49 snow telemetry sites across 9 years. We sample from continuous in situ
snow depth records to test a range of measurement timing and sampling error scenarios representative of
remote sensing capabilities. Assimilation reduces density bias by over 40% and SWE bias by over 70% across
climate zones and in both wet and dry years. There is little incremental benefit to SWE accuracy when
assimilating more than one depth observation near peak accumulation. SWE estimates are less sensitive to
observation timing than sampling error. Alternatively, more frequent depth observations improve melt‐out
date timing and reduce SWE uncertainty, a key consideration when evaluating the operational utility of
DA. In matching depth observations, the PF mostly acts to increase model precipitation inputs, while not
systematically shifting other parameter values or forcings across the climate zones represented with the
study sites. This demonstrates that precipitation is the largest source of model error. With DA, density errors
are still nontrivial (above 10%), illuminating the need for further improvements to modeled density to
estimate SWE within specified error limits.

Plain Language Summary The amount of water stored in seasonal snowpack (snow water
equivalent or “SWE”) is an important variable for water management yet is currently difficult to measure
in mountainous areas. One technique is to measure snow depth from airborne or satellite platforms and use
that depth to guide a model that simulates snow density and SWE with a technique called data assimilation.
We show that assimilation reduces errors in modeled SWE relative to control model runs, even when using a
single depth observation to guide the model. However, more depth observations are helpful to reduce
model uncertainty.

1. Introduction

Mountain snowpack and its melt dominate the surface hydrology of many regions, with implications for
water supply, hydropower, ecological processes, weather, and regional and global climate (Bales et al., 2006;
Serreze et al., 1999). Ongoing campaigns (e.g., NASA SnowEx) aim to determine the optimal combination of
remote sensors, platforms, and models needed to map snow water equivalent (SWE) globally—which is not
currently possible from existing satellite platforms (Dozier, 2011; Nolin, 2010; Sturm, 2015). The recent
Decadal Survey (National Academies of Sciences, Engineering, and Medicine, 2018) has recommended an
“explorer priority” to global snow depth and SWE mapping, with capabilities for resolving snow amounts
in mountain areas. These regional and global missions, as well as more local measurement campaigns,
prompt questions about the optimal characteristics of snow mapping with remote sensing and
modeling frameworks.

Spatially extensive snow depth observations can be used as the basis for maps of SWE (e.g., Painter
et al., 2016). Snow depth mapping is possible with several remote sensing approaches, including lidar, radar,
and photogrammetry, with deployments possible on spaceborne, airborne, drone, and ground‐based
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platforms (e.g., Grünewald et al., 2010; Lievens et al., 2019; Marti et al., 2016; Moller et al., 2017; Painter
et al., 2016; Vander Jagt et al., 2015). Depending on the sensor, platform, and spatial scale, repeat altimetry
snow depth observations have errors of ~10–50 cm (Deems et al., 2013; Lievens et al., 2019; Marti et al., 2016).
Depth mapping efforts have been completed at plot to watershed scales, but spatially extensive depth map-
ping is becoming possible at larger scales (e.g., mountain ranges). Retrieval methods over these larger
domains have a wide range of temporal sampling frequency; satellite‐based mapping may have an infre-
quent and fixed revisit time (e.g., potential snow depth retrievals every 91 days at mid‐latitudes with
ICESat‐2), while airborne approaches (e.g., Airborne Snow Observatory, ASO) are more flexible and can tar-
get key periods in the seasonal snow cycle (e.g., peak accumulation and melt season). While some
current/future remote sensing techniques aim to measure SWE directly (e.g., passive microwave, Global
Navigation Satellite System, or radar‐based techniques), SWE mapping based on spatially extensive snow
depth observations provide higher spatial resolution and likely smaller errors (e.g., Painter et al., 2016).

Snow depth alone is not sufficient to map SWE—estimates of snow bulk density are required to convert
snow depth into an equivalent water depth (e.g., Painter et al., 2016). However, there has been no demon-
strated capability for mapping snow density with satellite or airborne platforms, and in situ density obser-
vations are too sparse to be combined with spatially extensive depth observations. Thus, model‐based
estimates of bulk snow density are required to calculate SWE from intermittent repeat depth observations.
These models also provide spatial estimates of SWE before, between, and after the times when snow
depth is mapped. When snow depth distributions have been mapped across mountainous basins, SWE
uncertainty is dominated by uncertainty in modeled density (Raleigh & Small, 2017). Uncertainty in mod-
eled density results from forcing data (e.g., high uncertainty in precipitation), parameterizations (e.g.,
physical snow compaction routines), and model choice of process representations. For example, estimated
density can vary over a wide range (e.g., ±30%) due to model selection alone (Feng et al., 2008). Thus,
refining SWE estimates derived from repeat mapping of snow depth depends on improving modeled bulk
density, including a reduction in both errors (e.g., root mean squared error, RMSE) and uncertainty (i.e.,
standard deviation).

Data assimilation (DA) has been used to combine observations of snow depth with the aforementioned
imperfect model simulations of snow bulk density. As expected, simulated snow depth is improved when
observations of snow depth are assimilated, a result consistent across DA techniques (Hedrick et al., 2018;
Magnusson et al., 2017; Margulis et al., 2019). Assimilation of depth also provides a mechanism to improve
modeled bulk density: When simulated depth is too low (high) due to a low (high) precipitation bias, simu-
lated density can be too low (high) because of insufficient overburden compaction over time. Smyth
et al. (2019) demonstrated how assimilation of intermittent depth observations can reduce model bulk den-
sity errors by 25–50%, leading to error reductions in SWE relative to a control model. While the application of
DA to intermittent snow depth observations is nascent, this approach can indirectly improve snow density to
further improve SWE estimates, improvements that are not produced when combining an independent
model estimate of density with observed snow depth.

The design of a remote sensing mission to map SWE from snow depth is necessarily focused on how char-
acteristics of the sensor and platform affect observations of depth. But it must also consider how these char-
acteristics interact with models of snow bulk density and the assimilation system that is used to estimate
SWE from depth observations. Regardless of the spatial scale of the snow depth observations, there are
two aspects of depth retrievals that have the potential to influence DA: observation uncertainty and sam-
pling frequency. Sampling frequency determines the number of assimilation adjustments to modeled states,
and thus potentially the accuracy of the system. Each approach to satellite‐based snow depth mapping has a
different revisit time, determined by sensor and satellite characteristics (e.g., NASA's ICESat‐2 lidar and
ESA's Sentinel‐1 SAR). Airborne platforms (e.g. ASO lidar and drone‐based photogrammetry) can be
deployed to target specific times (e.g., peak SWE). Thus, there is a wide range of possible revisit times or sam-
pling dates within a snow season. The magnitude of observational uncertainty directly influences the out-
come of DA: Larger uncertainty results in less pronounced adjustments to modeled states (van
Leeuwen, 2009). In addition, every combination of sensor and platform yields a different magnitude of snow
depth uncertainty: Airborne lidar has an uncertainty of approximately 10 cm (e.g., Deems et al., 2013),
space‐based SAR uncertainty is approximately 30 cm (Lievens et al., 2019), and satellite‐based
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photogrammetry uncertainty can exceed 50 cm (e.g., Marti et al., 2016). In this paper, we implement a frame-
work to assimilate snow depth observations to investigate the effects of both observation timing and sam-
pling error on model estimates of SWE.

2. Objectives and Approach

Previous snow assimilation studies have investigated the impact of observation timing on model simula-
tions. In two studies, the greatest gains in season‐wide model depth accuracy were achieved by assimilating
a single depth survey, with inclusion of additional surveys yielding smaller, incremental benefits (Hedrick
et al., 2018; Margulis et al., 2019). These studies focused only on improvements to estimated snow depth
in a single basin in California and were temporally limited to assimilating airborne lidar data available from
ASO (weekly–biweekly from March–summer). Garnaud et al. (2019) assimilated SWE and found a shorter
revisit time (i.e., more observations) to be the key parameter for improvingmodel estimates. However, rather
than focusing on a state variable (SWE), this study focused on simulating a flux (runoff), which responds to
individual precipitation events which were important to capture with frequent observations. Therefore,
prior research has not established the utility of more frequent observations for the purpose of improving
modeled density and therefore SWE. Addressing this research gap holds implications for basic research
and science applications in watershed forecasting and management. For example, California Senate Bill
487 (introduced 21 February 2019) would have required the state to conduct up to 10 airborne snow depth
surveys per year over major reservoir‐supplying basins, implying an added value to observing snow depth
many times throughout the water year (WY). These and other spatially extensive, repeat snow depth retrie-
vals can be costly (e.g., $150 million over 10 years in CA Bill 487, Governor's Veto Message 13 October 2019),
and thus it is critical to assess the gains offered by additional snow depth observations from a remote sensing
mission or field campaign.

Of similar importance is the precision of snow depth observations. The Direct Insertion methodology
employed by Hedrick et al. (2018) treats snow depth observations as error free. Margulis et al. (2019) assumes
5 cm sampling error in the analysis, appropriate for airborne lidar retrievals. The study references a sensitiv-
ity test with sampling error ranging between 2 and 5 cm that produced limited differences in results. It is not
well established how estimated density and SWE in a DA framework respond to larger errors in measured
snow depth (e.g., in excess of 5 cm), errors which are possible with multiple platforms/techniques.

Here, we explore several factors critical to mission design that have not been considered in these studies
above. First, we quantify DA improvements to modeled snow density, SWE, and melt‐out dates, not just
snow depth. Second, we consider not just the accuracy of SWE estimates but also their uncertainty, which
is critical in operational applications. Third, we evaluate multiple snow depth sampling error magnitudes
to reflect a wider range of depth sensor precisions, not just airborne lidar. A key consideration for designing
regional and global SWE missions (e.g., NASA SnowEx and Decadal Survey) is the robustness of a snow
measurement‐modeling strategy across regional and interannual variations in climate. To examine these
dependencies, we conduct experiments at sites across the major snow regions of the western United States
across a 9‐year interval, WYs 2008–2016, to examine a wide range of depth and density conditions that exist
(Bormann et al., 2013; Sturm et al., 2010; Sturm & Holmgren, 1998).

While different quantitative goals of SWE error and uncertainty are appropriate for different spatial scales
and applications, the Decadal Survey Water Resource Panel targets SWE error of 10% (National
Academies of Sciences, Engineering, and Medicine, 2018). We will refer to this benchmark and are inter-
ested in which characteristics of snow depth acquisition (measurement frequency and uncertainty) allow
our DA system to achieve this benchmark (or which types come closest to meeting this benchmark, if none
can achieve it). In some circumstances, performance could be improved beyond that achieved by assimila-
tion alone, for example, by employing model calibration or bias adjustment. We show below that precipita-
tion inputs are the largest source of model error and that the DA system does not consistently shift the most
sensitive model density parameter. Thus, while calibration can improve model density in some sites and
years, it is not the most effective way to improve SWE estimates over wide domains and in
different environments.

We first demonstrate the utility of DA by improvingmodel estimates relative to a set of control (or open loop,
OL) model runs (section 4.1). This comparison can have limited utility, because OL simulations can be
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deceptively poor without model calibration. Therefore, we focus on intercomparing assimilation results in
different snow depth observation scenarios (Section 4.2), to isolate the sensitivity of SWE error and uncer-
tainty to observation timing and sampling error. Through these latter comparisons, we compare different
timing/error scenarios to the 10% SWE error benchmark articulated in the Decadal Survey.

3. Data, Methods, and Experiments
3.1. Snow Data

The goal of assimilating snow depth observations is to improve estimates of SWE. Central to this effort is a
coincident reduction in snow density errors. Therefore, measuring performance of a snow DA system
requires collocated snow depth, density, and SWE data. While assimilation of remotely sensed, spatially
extensive snow depth data is the end goal, these data are not accompanied by sufficient observations of snow
density and SWE, measured over the same scale of spatial support as snow depth. This does not permit effec-
tive validation of DA estimates of SWE or density, a limitation recognized by prior studies (e.g.,
Margulis et al., 2019).

Here, we sample the continuously observed snow depth time series recorded at snow telemetry (SNOTEL)
sites to generate synthetic records of intermittent snow depth observations. These records serve as a proxy
for remotely sensed observations (e.g., differential altimetry from lidar or SAR), with the benefit of collocated
depth, density, and SWE data that are continuous, allowing for evaluation of errors both at the time of assim-
ilation as well as before and after assimilation steps. Figure 1a demonstrates a continuous depth data set
resampled to monthly intermittent observations. We detail the sampling scenarios in section 3.6.

Wemanually screened 930 sites in the contiguous United States for continuous snow depth and SWE records
between WYs 2008 and 2016 and for locations with site photos that show depth sensors located directly
above the snow pillows. This step is necessary because we validate estimated density at each site against den-
sity observations that we derive by dividing the snow pillow SWE by collocated ultrasonic snow depth and
then normalizing by liquid water density (e.g., Mizukami & Perica, 2008). From this subset of sites, we
selected 49 sites across the western United States (Figure 2a) to represent a range in proximity to large bodies
of water, elevation, wintertime temperature, and precipitation—all factors known to influence snow depth
and density regimes (e.g., Mizukami & Perica, 2008). We chose at least one site from each of the eight climate
zones identified in Serreze et al. (1999), an additional 10 maritime sites on the western slope of the Cascades
(Zone 1: Pacific Northwest), 10 intermountain sites on the eastern slope of the Sierra Nevada (Zone 2:
Sierras), 10 intermountain sites on the eastern edge of the basin‐and‐range province (Zone 6: Utah), and
10 continental sites within the Colorado Rockies (Zone 7: Colorado). Figure 2a plots the site locations,
and Table S1 in the supporting information provides summary information. Melt‐out dates were recorded
at each site as the first snow‐free date (i.e., SWE < 25 mm) after the date of peak SWE. We did not include
sites from the California Department of Water Resources (CDWR) network (as in Margulis et al., 2019), as
information regarding collocation of CDWR snow pillows and depth sensors was not readily available to us.

We utilize the SNOTEL network to assess the performance of the particle filter (PF) in different climates and
with different revisit/sampling intervals but recognize disadvantages to this approach. First, SNOTEL sites
are preferentially located in flat, open clearings at midelevation—and can be unrepresentative of local con-
ditions (e.g., Gleason et al., 2017; Molotch & Bales, 2005; Wetlaufer et al., 2016). Second, snow bridging over
pillows can cause undersampling of SWE, and therefore density derived from SWE (Serreze et al., 1999).
Finally, we use SNOTEL data for both assimilation (depth) and validation (density and SWE). Although
depth and SWE are measured independently, the density observations used for validation are derived in part
from the depth we assimilate, which is not ideal. Still, these sites provide the density and SWE data required
for evaluation of the PF technique that would otherwise not be available at a location with snow depth obser-
vations alone (e.g., at all grid cells in a typical mountain basin).

3.2. Model Forcing Data

Most SNOTEL sites do not record the suite of inputs required for process‐based snow models (Raleigh
et al., 2016). Therefore, we force our model with hourly 1/8‐degree data from the NASA North American
Land Data Assimilation System Phase 2 (NLDAS‐2, hereafter called NLDAS) grid cells that contain each site
(Xia et al., 2012). This type of gridded product could be used to generate operational SWE products across
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Figure 1. Example implementation of PF improvements to (a) snow depth, (b) density, and (c) snow water equivalent (SWE). In panel (a), continuous depth
observations (green dashed line) are resampled to monthly intermittent observations (orange diamonds). The particle filter “wAvg” is the weighted average of
particle values, with weights generated by the PF. Precipitation values are daily sums. Panel (d) shows uncertainty, with lines for both weighted and unweighted
standard deviation.
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drainage basins and is therefore appropriate for this study. Precipitation and temperature are measured at all
SNOTEL sites. However, we did not combine these on‐site observations with NLDAS forcing data as a
blended input data set would not be internally consistent. More specifically, this blending could result in
nonrealistic combinations of forcing data, such as a day where SNOTEL data suggest precipitation is
occurring but NLDAS radiation data suggest clear‐sky conditions.

In generating our main results, we do not downscale NLDAS forcing inputs for two reasons. First, Smyth
et al. (2019) showed that density and SWE errors with assimilation and nondownscaled NLDAS model for-
cing were similar to errors when using high‐quality local meteorological forcing. Second, our DA accounts
for meteorological uncertainty and thus has some capability in adjusting for systematic biases in forcing data
(a function similar to downscaling). Our sites are flat, so downscaling would largely involve adjusting preci-
pitation, temperature, etc. based on the elevation difference between site and NLDAS grid cells and lapse
rates (e.g., from PRISM). This elevation difference averages ~200 m across our sites, so average changes to
precipitation (~5%) and temperature (~1.5 °C) with downscaling would already be within the range of var-
iations we generate in the DA scheme (see Text S3) and are therefore unnecessary. Similarly, shortwave and
longwave radiation vary with elevation and are meteorological inputs we vary in the DA framework
(Text S3).

To support our decision not to downscale in the main analysis, we perform a test that demonstrates that
downscaling precipitation and temperature inputs prior to assimilation yields negligible differences in
SWE, as predicted given the small elevation differences between SNOTEL stations and NLDAS cells. Even
with downscaling, significant changes to precipitation inputs are required for assimilation to match depth
observations (Figure S1). We also compare NLDAS precipitation to gauge measurements at each SNOTEL
site. Precipitation at SNOTEL sites is 30% higher (on average) than from NLDAS (Figure S2), a difference
similar to values reported previously (He et al., 2019).

3.3. Snow Model

For this study, we use the Flexible Snow Model (FSM2), an extension of the Factorial Snow Model
(Essery, 2015). FSM2 (version released 15 November 2018) is a multiphysics energy balance model of snow
accumulation and melt—with modular options for seven parameterizations, giving 192 possible model con-
figurations. Model physics and configuration options are documented at https://github.com/RichardEssery/
FSM2.

We compiled FSM2 with the default physics options. When fresh snow is deposited, the snowpack mass
increases by the amount of precipitation, new density is fixed to 100 kg/m3, and the snowpack depth
increases by the ratio of the two. Density then changes as a function of viscous overburden compaction by

Figure 2. Panel (a) shows a map of SNOTEL locations. Colored circle locations are from regions identified in Serreze et al. (1999). Other sites (diamonds) span
continental to maritime climates. Panel (b) is a visualization of snow depth sampling scenarios at a given site, relative to an example depth time series. For each
timing scenario (represented by a horizontal bar), depth would be sampled at each vertical tick. Here, pSWE and pSWE+1 are shown relative to this example's
date of peak SWE, whereas we actually calculate a climatological date of peak SWE with historical data.
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overlying layers and thermal metamorphism, using equations developed by Anderson (1976). SWE addition-
ally changes with modeled melt and sublimation. Our sites are flat and open, so we do not use FSM2 to simu-
late canopy dynamics. We use the default option for the number of snow layers (n = 3), with maximum
thickness of 10 cm in the top layer, 20 cm in the middle layer, and no maximum thickness in the bottom
layer. We do not experiment with varying the number or thickness of snow layers, but discuss it as a possible
avenue for improving modeled density (section 5).

3.4. DA Methodology

The DA technique used is the PF (Smyth et al., 2019). The PF attempts to represent the true probability den-
sity of a state variable by generating an ensemble of model estimates or particles (Figures 1a to 1c). The par-
ticles diverge because the model runs are varied to reflect uncertainties in parameter choices and forcing
data (section 3.5). The PF then weights each particle by comparing its state to available snow depth observa-
tions (Figure 1a), while also accounting for the observational uncertainty. To avoid filter degeneracy (van
Leeuwen, 2009), the particles are resampled after each assimilation timestep—wherein particles with very
lowweights are eliminated, while particles with high weights are duplicated and advanced to the next assim-
ilation timestep. This is why the spread between particles contracts at assimilation points in Figures 1a to 1c.
Weighting and resampling do not alter model states—similar to the Particle Batch Smoother but unlike
direct insertion and Kalman update approaches.

We propagate 75 particles between assimilation timesteps following particle‐number sensitivity data in
Magnusson et al. (2017). We use the stochastic universal (re)sampling algorithm, which Kitagawa (1996)
showed to have the lowest resampling noise among several methods (van Leeuwen, 2009). With this algo-
rithm, the weights for each particle (which sum to 1) are placed on a line [0,1]. Then, a random number
is chosen between 0 and 1/N, and then N segments of length 1/N are added in sequence. Particles are
resampled if a line endpoint falls within its weight bin. In this way, some particles can be chosen more than
once, but N particles are always selected for propagation.

We calculate the PF “best estimate” of snowpack depth, density, and SWE as the weighted average of all par-
ticle simulations over time, with weights that are generated by the PF at every assimilation timestep and car-
ried backwards in time through the interval preceding the assimilated observation (Magnusson et al., 2017).
We also generate an OL control run for comparison at all sites and years, using unperturbed NLDAS forcings
and the default parameters in FSM2 (Figures 1a to 1c). This OL simulation is the equivalent of the simulation
one would use in the absence of DA. To evaluate the PF and OL accuracy relative to observations, we calcu-
late bias and RMSE in density and SWE and compare errors in estimated melt‐out dates. To evaluate the
uncertainty in SWE estimates, we calculate the weighted standard deviation (1‐sigma) of particles through
time (Figure 1d) with weights generated by the PF. Uncertainty is an important consideration when evalu-
ating the operational utility of the PF, especially between observations when particles have not been
reweighted and the particle spread and uncertainty increases (Figures 1a and 1d). By this metric, uncertainty
is similar to precision and is governed by the spread of particles and their weights—which in turn are influ-
enced by the timing and uncertainty of observations (Figure S3).

3.5. PF Ensemble Generation

Following procedure from Smyth et al. (2019), we generate ensembles of particles by running themodel with
different forcing inputs and varying a snow compaction parameter—to represent possible sources of model
uncertainty (Table 1).

We vary the snow viscosity parameter (called “etab” in FSM2 code) around the commonly used default value
of 21 cm3 g−1 (Kojima, 1967) in a uniform range (±6 cm3 g−1) to represent uncertainty in model parameter
values. This single parameter was selected based on a parameter sensitivity analysis, which showed varia-
tions in etab accounted for almost all of variations in SWE when all densification parameters were varied
and no forcing data uncertainty was considered (Figure S4). In preliminary experiments, we found that vary-
ing new snow density (“rhof”) did not influence results, so we exclude it here for simplicity.

We perturb each particle's hourly precipitation, radiation, and temperature inputs with additive stochastic
noise, pulled from normal distributions with bounds given in Table 1. To capture systematic errors, we also
apply a systematic bias to each forcing—a single bias perturbation applied to an entire “window” between
subsequent assimilation timesteps, following ranges applied in Raleigh et al. (2015). This two‐step
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approach to generate a forcing ensemble is similar to Magnusson et al. (2017). For example, precipitation is
adjusted with an additive, hourly, random error pulled from a normal distribution bound between ±25% of
the observed hourly data and a multiplicative window‐wide bias pulled from a uniform distribution between
−75% and 300%. All additive perturbations are positive, that is, the perturbed value is the observed
value + perturbation. To bind each set of normally distributed perturbations in a desired range (e.g.,
±80 W/m3 for hourly shortwave radiation), we pull 75 (i.e., one for each particle) values from a standard
Gaussian distribution (mean of zero, standard deviation of one) and then rescale and translate the set of
numbers to have desired maximum and minimum values.

3.6. Experiments

First, we consider the performance of the PF relative to the OL across all sites and years, using a monthly
observation interval and a single depth uncertainty of 10 cm (Figure 2b) to evaluate the capability of the
PF technique across a range of snow climates and conditions.

Then, we investigate the effect of observation timing by evaluating PF performance in several possible retrie-
val scenarios:

A Consistent revisit intervals typical of existing space‐based platforms but that could also be achieved
with airborne missions under ideal weather conditions. These scenarios include 1‐week, 2‐week,
4‐week, and 12‐week intervals between observations—thereby covering a range of possible depth retrie-
vals (e.g., near weekly from Sentinel‐1 to approximately every 3 months from ICESat‐2). For modeling
purposes, we restrict observations to between November and June. A weekly interval yields 31 observa-
tions, a 2‐week interval has 16 observations, a 4‐week interval produces eight observations, and a
12‐week interval has three observations (Figure 2b).

B Targeted deployments typical of airborne surveys. Specifically, we test scenarios with a single observa-
tion at peak SWE (pSWE), with observations at peak SWE and 1month afterward (pSWE+1), and a series
of 10 dates intended to represent the proposed sampling strategy over basins in California through Senate
Bill 487 (we refer to as the “CA” scenario). The date of peak SWE for each site is calculated as the average
day‐of‐year of peak SWE over the 9‐year record (i.e., a climatological peak SWE date). The CA timing sce-
nario calls for intensive observations during the late winter andmelt season but does not specify the dates
in Bill 487. Based on historic snow sampling strategies employed in California (snow courses and lidar
surveys), we use a monthly sampling from January to April and biweekly thereafter through July
(Figure 2b).

In all timing scenarios, we assume ideal conditions for observing snow depth, that is, no missing data or
changes in observation error due to environmental factors known to impact some sensors, such as clouds,
forests, or wet snow.

Table 1
Details on Perturbations to a Snow Viscosity Parameter (etab) and Various Forcing Data to Create the PF Ensemble

Variable Unit Adjustment Distribution Lower bound Upper bound

etab cm3/g Additive Uniform −6 +6
Precipitation
Hourly noise mm/h Additive Normal −25% +25%
Window adj. mm/h Multiplicative Uniform −75% +300%
SW Radiation
Hourly noise W/m2 Additive Normal −160 +160
Window adj. W/m2 Additive Normal −100 +100
LW Radiation
Hourly noise W/m2 Additive Normal −80 +80
Window adj. W/m2 Additive Normal −25 +25
Temperature
Hourly noise C Additive Normal −7.5 +7.5
Window adj. C Additive Normal −3 +3

Note. Hourly noise adjusts each hour of input data individually, while the “window adjustment” refers to a bias (additive or multiplicative) applied to an entire
time period between two assimilation steps.
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Finally, we examine the impact of observational uncertainty by repeating our tests with different specified
observation errors. We introduce a random error to the assimilated snow depth, pulled from a normal dis-
tribution with an RMSE ranging from 10 (e.g., airborne lidar) to 50 cm (e.g., spaceborne photogrammetry).
We focus the results and discussion on these two end points (10 and 50 cm) in the analysis and then consider
the full spectrum of observation error within this range together with the suite of timing scenarios to eval-
uate the linearity of results.

4. Results
4.1. Improvements From the PF

First, we compare OL and PF performance relative to in situ measurements at the 49 SNOTEL sites, simulat-
ing monthly depth observations for assimilation with observational uncertainty of 10 cm; sample results for
WY 2016 are shown in Figure 3 for the nine sites we selected to span climate zones (see Figure 2a). These
plots illustrate the PF framework at the point scale across wet or dry climates/years and in cases where
the OL performs comparatively poorly or well relative to observations.

The spread between particles, and therefore the uncertainty of DA estimates, increases because we perturb
model inputs and the densification parameter between assimilation steps. Particle spread tends to increase
more during the accumulation season, because the model outputs are highly sensitive to precipitation,
which is perturbed widely in our DA setup (Table 1, Figure S4). As a result, depth, density, and SWE stan-
dard deviation typically increases during the accumulation season and then level off or decrease at the end of
the year, when precipitation is lower.

As expected, DA removes nearly all errors in snow depth (Figures 1a and 3). We focus our analysis instead on
how DA improves simulations of snow density, SWE, and melt‐out date. On average, density bias is reduced
by 44%, SWE bias by 71%, and melt‐out date by 87% (31 day improvement, on average) relative to the OL
(Figure 4). The PF reduces SWE bias in 94% of cases, across sites and years (n = 441). Model accuracy
improvement is similar with other metrics (e.g., RMSE, Table 2), at peak SWE (58% reduced SWE bias),
and during the ablation season (57% reduced SWE bias). The OL nearly always underestimates density,
SWE, and melt‐out date; note the preponderance of positive OL errors in Figure 4, which signify model
underestimation in the OL.

Figure 3. Comparison of observed data, OL, and PF estimates with assimilation of simulated monthly snow depth observations for nine selected SNOTEL sites—
one in each zone from Serreze et al. (1999). All data are from WY 2016. At all sites, the PF is able to closely match observed depth. Improvements to density and
SWE vary between sites (e.g., Leavitt Lake, CA vs. Snowslide Canyon, AZ).
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At all sites and years, depth assimilation improves model depth by weighting particles with considerably
higher precipitation inputs than NLDAS through the snowfall correction factor (SCF, Figures 5a and 5b).
The median SCF is 1.64, yielding precipitation input to the model that is over 50% greater than in the
NLDAS forcing. The SCF is generally higher at warmer maritime sites (Figure 5a) and also higher at sites
where SNOTEL elevation is greater than the elevation of the corresponding NLDAS grid cell (Figure 5b).
It is possible that, in favoring particles with higher precipitation, the PF is also compensating for other model
errors. However, the PF does not consistently shift other meteorological inputs (temperature or radiation) or
the model parameter (snow viscosity) that we vary for ensemble generation (Figures 5c to 5f). One exception
is with temperature in the maritime zone (Figure 5d), where the PF consistently favors particles with lower
temperatures, which increases the snowfall fraction and reduces likelihood of midwinter melt events.
Improved snow depth directly increases SWE estimates and thus extends estimated melt‐out dates. It is
likely that improved snow depth indirectly improves density estimates by increasing the amount of modeled
overburden compaction.

4.2. Impact of Observation Timing and Errors on SWE Accuracy and Uncertainty

Having established the benefits of the PF relative to the OL across a wide range of annual and regional con-
ditions in the case of monthly snow depth assimilation, we next examine how different snow depth sampling
timing scenarios impact SWE accuracy (as reflected by RMSE) and uncertainty (as reflected by weighted
standard deviation) and melt‐out errors, focusing first on the 10 cm sampling error scenario. SWE accuracy
has low sensitivity to the timing and total number of depth observations (Figure 6a). Across all years, we find
only slight improvements in model accuracy with an increasing number of observations, either at regular
intervals typical of satellites or campaign‐style that can be applied in airborne or drone surveys. Only the
pSWE and 12‐week cases exhibit different performance than the rest (at the 5% significance level with a
rank‐sum statistical test, Table S2). However, both are only slightly worse than the other timing scenarios
and all scenarios are far better than the OL (Table 3), which demonstrates that the majority of SWE
RMSE improvements are attained by assimilating one depth observation (e.g., pSWE). Similar to the
10 cm error case, the PF performance with 50 cm sampling error is largely insensitive to the number of
observations (Figure 6a).

The accuracy differences between timing scenarios are consistent across precipitation regimes and climates
(Table 3). RMSE decreases moving from wetter, maritime climates (e.g., Pacific Northwest) to dryer, conti-
nental climates (e.g., Colorado). Additionally, we find the same patterns within each region as in the aggre-
gate: More observations lead to lower model error, but all timing scenarios are significantly better than
the OL.

SWE RMSE is sensitive to depth sampling error. For example, 50 cm sensor error yields ~30% greater RMSE
than 10 cm sensor error (Table 2, Figure 6)—though it is still greatly improved over the OL. This difference
in SWE RMSE between the two sampling error scenarios is significant when evaluating SWE RMSE against

Figure 4. Scatterplots of (a) snow density bias, (b) SWE bias divided by peak SWE, and (c) melt‐out date error for all sites and years, assuming 10 cm sampling
error. Each point corresponds to an individual year at one of the 49 sites (n = 441) and each panel plots PF against OL performance with monthly observations,
such that points in the gray areas indicate PF improvement. The sign convention is observation minus model, so positive values indicate the open loop model is
underestimating density, SWE, and melt‐out dates.
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Table 2
Comparison of Error Metrics Calculated Across all Sites and Years, With Monthly Sampled Observations

Monthly observations

RMSE Bias Melt‐out date

Full season Abl. season Full season Abl. season Peak SWE Bias (days)

Density (kg/m3)
Open loop 93 146 80 142 101 40
PF: 10 cm sampling error 67 67 45 99 71 9
PF: 50 cm sampling error 69 69 47 103 75 14
SWE (mm)
Open Loop 254 197 216 97 332
PF: 10 cm Sampling Error 99 89 62 42 138
PF: 50 cm Sampling Error 142 122 87 58 207

Note. Ablation season is defined as peak SWE to snow disappearance date.

Figure 5. Comparison of weighted snowfall correction factor (SCF) by climate and site elevation (a) and by site elevation difference from corresponding NLDAS
grid cells (b). In general, sites with lower elevation require a larger SCF adjustment from the PF to match observed depth. Although larger SNOTEL‐NLDAS
elevation differences require greater SCF corrections, all SCFs are above 1. Panels (c)–(f) show histograms of PF weighted average adjustments to other model
inputs/parameters, showing that the PF does not consistently shift other perturbation sources to match observations. All additive perturbations are positive, that
is, the perturbed value is the observed value + perturbation.
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Figure 6. Box‐and‐whisker plots of (a) SWE RMSE, (c) SWE uncertainty, and (d) melt‐out date error for all sites and years in different temporal sampling
scenarios. For reference, the median open loop SWE RMSE in (a) is 254 mm and error in (d) is 40 days. Panel (b) shows the percent of simulations (among
the 49 sites and 9 WYs) where the SWE RMSE meets the stated goal of 10% relative SWE error (i.e., relative to peak SWE at that given site/year).

Table 3
Comparison of SWE RMSE for Different Timing Scenarios, Precipitation Regimes, and Climates, Assuming 10 cm Observation Sampling Error

SWE RMSE (mm)
Regular intervals (weeks between obs)

10 cm obs error OL pSWE pSWE+1 CA 1 week 2 weeks 4 weeks 12 weeks

All sites and years 254 129 108 97 100 102 104 125
Div. by peak SWE 40% 20% 17% 15% 16% 16% 16% 20%

Precipitation
Wet years 355 187 173 152 155 162 167 186
Dry years 179 98 87 71 74 75 75 85

Climates
Maritime—Pacific NW 483 291 217 221 230 235 235 247
Intermountain—Sierra 205 121 101 91 92 100 104 105
Intermountain—Utah 192 93 87 76 74 74 80 96
Continental—Colorado 148 87 65 51 52 56 64 83

Note. Wet and dry years are defined (for each site) as the years with the three highest and three lowest precipitation totals, respectively.
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our stated goal of 10% SWE error. Figure 6b shows the percent of
sites/years where SWE RMSE meets this 10% error threshold (relative to
peak SWE at the given site/year). For the 10 cm sampling error case, the
“success rate” of meeting the stated RMSE goal ranges from 11% (pSWE
observation timing) to 24% of sites/years (ASO timing). Meanwhile, the
“success rates” for the 50 cm sampling error case is only 3–10% across
sites/years.

Figure 7 shows SWE error for the full space of sampling errors between
the two endpoints (10 and 50 cm) and for all regular timing intervals
between 1 and 12 weeks. Although the axis units are not directly compar-
able, the contours in Figure 7 becomemore horizontal moving from left to
right across the plot, indicating that SWE accuracy is more sensitive to
observation timing for higher sampling errors (e.g., 50 cm compared to
10 cm). However, this is only true in terms of absolute RMSE differences,
not relative (percentage) differences: The percentage change in SWE
RMSE across timing scenarios for each sampling error case is consistent
across the plot. Therefore, the conclusions we draw when analyzing the
two endpoint cases (10 and 50 cm sampling error) are generalizable to
other sampling scenarios.

SWE uncertainty clearly decreases with more frequent observations
(Figure 6b). More frequent observations restrict the ensemble of particle
estimates from spreading, thus lowering uncertainty. Furthermore, SWE

uncertainty is greater with larger sampling error in snow depth (i.e., 50 vs. 10 cm). With a larger sensor error,
particles that are farther from observations receive higher weights, increasing the weighted standard devia-
tionmeasure of uncertainty. Still, these weights are applied nearly evenly above and below each observation,
and the best particles receive the highest weights, so sensor error does not affect SWE accuracy (bias, RMSE)
as much as it changes SWE uncertainty.

The accuracy of melt‐out date estimation is improved with more observations (Figure 6c, Table S2). All tim-
ing scenarios are significantly better than the OL (median 40 days error), so again only one observation at
peak SWE yields a majority of the possible improvement. Higher sensor error increases melt‐out day errors,
but still with improvements over the OL estimates (Table 2).

5. Discussion and Conclusions

The PF improves simulations of snow depth, density, SWE, and melt‐out date across nearly all years and cli-
mates, supporting and extending the results of Smyth et al. (2019), which focused on a single site in
California over 4 years. DA improves SWE estimates in two ways: (1) directly adjusting depth and (2) indir-
ectly improving density, because depth and density are linked via densification processes such as overburden
compaction. More accurate SWE yields improvements in melt‐out date, an expected result given the
well‐established link between SWE accumulation and melt‐out timing (e.g., Trujillo & Molotch, 2014).
The absolute magnitude of SWE errors (both OL and PF) is higher in lower‐elevation, maritime climates
(e.g., Pacific Northwest) compared to higher‐elevation, continental (e.g., Colorado) climates, but the relative
improvement (from OL to PF) is similar in every climate (Table 3). Prior work has focused on the western
slope of the Sierras (e.g., Tuolumne Basin), which is not included in our sample but should fall within the
range of site conditions considered here; thus, our results can be compared to prior studies.

The PF weights simulations with precipitation inputs that exceed NLDAS by 50% or more. This large adjust-
ment to precipitation inputs suggests that the magnitude of NLDAS precipitation in mountains is too low,
consistent with previous studies (e.g., Enzminger et al., 2019; He et al., 2019; Henn et al., 2018). We use
gridded NLDAS data in this study to more closely replicate the model inputs used in a distributed applica-
tion. However, gauges at the SNOTEL sites record ~30%more precipitation than NLDAS (Figure S2), similar
to the average difference across the western United States found by He et al. (2019). If we instead used pre-
cipitation measured at SNOTEL sites, the SCF values determined via DA would be approximately 1.2. An

Figure 7. The full tradespace between observation timing (vertical axis)
and sampling error (horizontal axis) endpoints discussed in the results.
Contoured colors indicate SWE accuracy (RMSE). For ease of
interpretation, only regular intervals are plotted here (i.e., regular weeks
between observations).
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adjustment of 20% is consistent with expected errors due to gauge undercatch (Rasmussen et al., 2012) and
preferential snow drifting onto SNOTEL sites (Meyer et al., 2012).

An elevation‐based precipitation adjustment (i.e., downscaling) would not be sufficient to match observa-
tions. While PF‐weighted average SCF values are correlated with SNOTEL‐NLDAS elevation differences,
sites with no elevation difference still require SCFs of ~1.5X (Figure 5b). To confirm this result, we per-
formed a separate downscaling test with precipitation inputs adjusted before assimilation‐related perturba-
tions were applied (Figure S1). Precipitation adjustments were based on the difference between the local
(SNOTEL) and NLDAS grid cell elevations and a lapse rate of 0.02% increase in precipitation per meter of
elevation increase, based on average precipitation lapse rates applied in central and western U.S. regions
in PRISM (Daly et al., 2008). The precipitation adjustment eliminates the slope in the trendline in
Figure 5b, that is, SCF differences between sites related to elevation differences. However, 75% of
DA‐weighted SCF values still ranged between 1.5X and 2.0X, indicating that downscaling‐style adjustments
alone are not sufficient to match observations. We repeated the downscaling experiment and similarly
lapsed temperature (along with precipitation) in the test. SWE estimates were virtually unchanged, demon-
strating that forcing perturbations during the assimilation process encompass potential
downscaling changes.

While simply increasing precipitation forcing by the median SCF (~1.6X), for example, would improve the
OL performance in many cases, PF performance would remain the same (see experiments with forcing data
quality in Smyth et al., 2019). Further, the optimal bias correction factor is not known a priori. More impor-
tantly, the SCF varies considerably across sites/years (Figures 5a and 5b), and thus applying just a single
value of SCF without DA would yield considerable errors.

Aside from precipitation, the PF does not consistently shift other model inputs or the most sensitive
density‐related parameter (Figure 7), suggesting that, of the factors we vary, precipitation is the largest
source of model error—and model calibration would not be sufficient to reduce errors. Similar results were
demonstrated for models that predict SWE directly based on meteorological variables and snow process
representation (Günther et al., 2019; Raleigh et al., 2015), but to our knowledge, this result has not been pre-
viously shown for snow bulk density prediction. This result is supported by the SWE sensitivity test with
FSM2 (Figure S4). Perturbations to particles in this study were based on existing literature (see section
3.5). Regardless, our results are not sensitive to particle perturbation ranges (Figure S5). One exception to
our results is with temperature in the maritime zone, where the PF favors particles with lower temperature
inputs. This is likely due to rain/snow partitioning in a mild winter climate, as DA attempts to increase
snowfall to match observations.

The results indicate that the optimal timing/frequency and error in snow depth observations depend on the
snow metric of interest. If the goal is to reduce errors in SWE, a DA framework can likely be successful with
only a single snow depth observation. This result is consistent with Margulis et al. (2019). A single update
can efficiently weight the particles with better precipitation inputs, compaction parameters, and other fac-
tors necessary to improve modeled depth, and thus density and SWE. In an operational sense, this result
indicates that frequent, potentially expensive, observations of snow depth are largely unnecessary to reduce
SWE errors, at least in the snow regime sampled by SNOTEL sites. This result is consistent with previous
conclusions based on analysis of depth (e.g., Margulis et al., 2019), but here, we additionally validate density
and SWE, across climates and in multiple years. We also move beyond the case of airborne lidar retrievals
(e.g., Hedrick et al., 2018; Margulis et al., 2019) and demonstrate similar RMSE results with higher depth
sampling error (50 vs. 10 cm), which are germane to current satellite photogrammetry capabilities. The accu-
racy of melt‐out date estimates, which has implications for ecological studies and snowmelt timing applica-
tions, is more sensitive than SWE RMSE to sampling frequency of snow depth—but still, one observation
yields most of the improvement over the OL.

However, if the goal is to reduce errors in SWE uncertainty, then more frequent and/or more precise snow
depth observations are needed. This is an important consideration when evaluating the operational utility of
the combined sensor, model, and DA system. More depth observations yield lower uncertainty, because they
constrain the spread between particles during the WY and therefore lower our weighted standard deviation
metric (Figure 1). In an operational framework, it is also important to recall that PF weights are carried back-
ward in time through the interval preceding assimilated observations. Therefore, additional observations are
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also essential to limit occurrences of long intervals between observations, when particles have not yet
been reweighted.

If maximizing SWE accuracy and minimizing SWE uncertainty are both priorities, a platform with regular,
approximately monthly (4‐week) observations may be sufficient, even in climatologically abnormal years.
This timing can be realistically achieved by satellite or targeted airborne platforms.

The ideal number/timing of observations in the mission design tradespace also depends on the sensor sam-
pling error. For example, SWERMSE is similar for weekly, 50 cm sampling error versus 12‐week, 10 cm sam-
pling error (Figure 6a). In this comparison, the 12‐week case also has lower SWE uncertainty. This is an
important consideration given the range in uncertainties of sensors that could be deployed to retrieve
snow depth.

Here, we used the PF to assimilate depth observations at SNOTEL sites, yet the end goal is to utilize spatially
extensive depth observations from remote sensing platforms. In our experimental setup (with validation
from SNOTEL snow pillows and depth sensors), model performance would almost necessarily be worse if
we assimilated “real” remotely sensed depth data, because the assimilated depth would not match
SNOTEL measurements.

It is computationally feasible to apply the PF in applications which require simulation of large number of
pixels, either when using high‐spatial resolution lidar data from a single basin or lower‐resolution global
data. For reference, FSM2 can simulate 1 year at a point on one processor in approximately 2 s. To further
increase computation speed, other DA techniques such as the particle batch smoother (PBS) can assimilate
multiple observations at once and are more efficient (Margulis et al., 2015). We repeated the experiments
here using the PBS and found similar results (Table S4).

None of the timing/sampling error scenarios we consider reach the 10% SWE error threshold articulated in
the Decadal Survey at all sites and years (Figure 6a). This has some important implications for mission
design, because our results imply we cannot achieve 10% SWE error at all sites/years by increasing the sam-
pling frequency of snow depth alone. Given that SWE errors are more sensitive to sampling error than tim-
ing, one path forward is to target improvements in retrieval uncertainty (i.e., reduce snow depth error to
values less than 10 cm). This may be difficult given budgetary and technological constraints, especially when
moving from airborne/drone platforms to satellites. Instead, we suggest that improvements to modeled den-
sity are paramount to achieving the 10% targeted SWE error, as many large density estimation errors are evi-
dent, even with assimilation (Figure 3). The three‐layer FSM2 model version implemented here tends to
underestimate density. One path to produce more realistic snow density would be to increase the number
of model snow layers, because previous research suggests more layers increases densification (Weiss, 2019).

In conclusion, this study illustrates the gains offered by additional or more precise snow depth observations,
in the context of improving SWE estimates with DA. The optimal timing and sampling error of depth retrie-
vals for a combined observation‐model‐DA framework depends on the maximum acceptable error and
uncertainty. The snow and earth observation communities are currently articulating requirements for the
accuracy and uncertainty of SWE retrievals (e.g., “global SWE … every 3–5 days, to 10% accuracy for SWE
values to 1 m” in the Decadal Survey). Our results highlight important considerations for achieving these
goals. Future research should examine the effects of spatial resolution on depth assimilation for SWE estima-
tion, along with the impact of sensor‐specific limitations such as cloud and forest cover.
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