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A B S T R A C T

Mapping inundation dynamics and flooding extent is important for a wide variety of applications, from pro-
viding disaster relief and predicting infectious disease transmission to quantifying the effects of climate change
on Earth's hydrologic cycle. Due to the rapid and highly spatially heterogeneous nature of flooding events,
acquiring data with both high spatial and temporal resolutions is paramount, yet doing so has remained a
challenge in satellite remote sensing. The potential for Global Navigation Satellite System-Reflectometry (GNSS-
R) to help address this challenge has been explored in several studies, the bulk of which use data from the
Cyclone GNSS (CYGNSS) constellation of GNSS-R satellites. This work presents a simple forward model that
describes how surface reflectivity measured by CYGNSS should change due to flooding for different land surface
types. We corroborate our model findings with observations from the Amazon Basin and Lake Eyre, Australia.
Both the model and observations indicate that the relationship between surface reflectivity and surface water
extent strongly depends on the micro-scale surface roughness of the land and water. We show that the increase in
surface reflectivity due to flooding or inundation is greatest in areas where the surrounding land has dense
vegetation. In areas where the land surface surrounding inundated areas is perfectly smooth, the increase in
surface reflectivity due to flooding is not as strong, and confounding effects of soil moisture and water roughness
could lead to large uncertainties in resulting surface water retrievals. However, even a few centimeters of surface
roughness will result in several dB sensitivity to surface water, provided that the water is smoother than the land
surface itself.

1. Introduction

Mapping the presence of surface water and quantifying how its
extent changes with time is important for scientific and societal appli-
cations. High-resolution, rapidly-updated data describing the evolution
of floodwaters during severe weather events are needed for first re-
sponders and governmental agencies (Gillespie et al., 2007; Schumann
et al., 2007). The combined effect of the predicted acceleration of the
hydrologic cycle due to climate change, sea level rise, and the increase
of population in coastal and other flood-prone areas will likely increase
the demand for such data in the future (Durack et al., 2012;
Huntington, 2006). In the tropics, mapping seasonal inundation can
lead to better predictions of malarial and other infectious disease
transmission (Baqir et al., 2012). And, quantifying the collapse of
wetlands around the world is critical, as many of the wetlands that
provide economic and ecological benefits to surrounding communities
are rapidly disappearing (Gopal, 2013).

There are several ways to map inundation extent, and each method
comes with its own advantages and disadvantages. Surface flooding can
happen within a matter of hours and can be extremely spatially het-
erogeneous, so collecting data with both high spatial and temporal
resolution is paramount during severe weather events. Long time series
are also desired to document lower frequency changes in inundation,
like mapping the collapse of wetlands, so data continuity is also im-
portant.

Mapping inundation extent is usually accomplished using satellite
remote sensing, as in situ observations are sparse and sometimes lo-
gistically infeasible due to many wetlands or other inundated areas
being in remote regions, or conditions being too dangerous during se-
vere weather events. Satellite remote sensing of surface water can be
accomplished using optical, thermal, or microwave instruments.
Optical instruments, like Landsat, have been used to create long time
series of inundation extent (e.g. (Pekel et al., 2016)) and are available
at high resolution (~30 m). However, the presence of cloud cover in
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humid areas or during storms often prevents their use for observing
single flooding events. Optical techniques can also not sense water
underneath vegetation, which leads to an underestimation of the total
amount of surface water. Microwave instruments, which can penetrate
cloud cover and some amount of vegetation, are traditionally divided
into two categories, either active (monostatic) radars or radiometers.
Radiometers can provide data every 2–3 days but with an extremely
coarse spatial resolution (> 25 km), and the products generated from
these instruments are generally provided in terms of the fraction of a
pixel that is inundated (e.g. (Schroeder et al., 2015)). Monostatic radars
can provide data with a high spatial resolution (~25 m) but at the
expense of temporal resolution (> 10 days) (Geudtner and Torres,
2012). Inundation datasets derived from monostatic radar are usually
provided as a binary presence/absence of water for each pixel.

In recent years, increasing attention has been paid to the potential
of another type of microwave remote sensing technique to map in-
undation, Global Navigation Satellite System-Reflectometry (GNSS-R).
GNSS-R, in effect, repurposes transmitted L-band signals intended for
positioning and uses them to remotely sense the Earth's surface. This
bistatic radar technique is like monostatic radar in that it measures how
a transmitted signal interacts with the Earth's surface. It is different in
that it uses a “free” signal source, which significantly decreases the cost
of this technique, and the scattering geometry is also different.
Monostatic radars send out a signal and measure how the signal
bounces back to the receiver. GNSS-R, on the other hand, measures the
signal that is scattered in the forward direction towards the receiver
(Fig. 1). Because GNSS-R instruments are relatively inexpensive, since
they do not require a transmitter, constellations of these instruments
can be launched, which significantly reduces the temporal repeat cycle
and opens up the possibility for multiple overpasses each day.

One constellation of GNSS-R instruments is already on orbit and has
been collecting data since early 2017: the Cyclone GNSS (CYGNSS)
mission. CYGNSS was designed to sense ocean surface wind speed to
increase understanding of hurricane intensification in the tropics (Ruf
et al., 2018, 2012). However, soon after its launch, it was discovered
that the data that are collected over land appear to be sensitive to ex-
istence of surface water, as Fig. 2 exemplifies. The eight CYGNSS sa-
tellites are able to record surface reflections coming from as far north
and south as± 38 degrees latitude. Due to the continual movement of
the eight CYGNSS satellites and the thirty-two Global Positioning
System (GPS) satellites that act as the transmitters, the point of re-
flection on the Earth's surface is constantly changing, which means that
the surface is sampled pseudo-randomly. The CYGNSS satellites are
each able to record up to four independent reflections at one time, even
though reflections from more GPS satellites might be in view. Over the
ocean surface the CYGNSS mission has estimated the mean repeat time

to be ~4 h (Ruf et al., 2012). The temporal repeat frequency over the
land surface is longer, due to the fact that the probable spatial resolu-
tion over the land surface is smaller, which results in more time needed
between the collection of collocated observations. The spatial resolu-
tion is described in more detail below. Generally, after a few days to a
week spatial coverage over land is dense enough that only small gaps
remain in aggregate maps. Although the CYGNSS satellites themselves
may not provide the daily, complete spatial sampling that is desired for
flooding applications, they do provide insight into what might be pos-
sible with additional GNSS-R satellites or GNSS-R receivers able to re-
cord more than four reflections at once, which are already in
development.

The purpose of this work is to describe the relationship between a
CYGNSS observation and the surface water extent within the CYGNSS
footprint. Previous works (e.g., (Chew et al., 2018a, 2018b; Jensen
et al., 2018; Morris et al., 2019; Nghiem et al., 2017; Rodriguez-Alvarez
et al., 2019)) have matched CYGNSS and other GNSS-R data in specific
regions to ancillary remote sensing datasets or in situ observations to
show that the GNSS-R data are responding to changes in inundation
extent. Here, we will use a simple forward model of reflectivity to
characterize the relationship between CYGNSS observations and surface
water extent. We will compare results from the model to CYGNSS ob-
servations from two benchmark test regions and comment on the po-
tential of using this model as the foundation for a retrieval algorithm to
map inundation using CYGNSS data.

2. CYGNSS data

The data that CYGNSS records come in the form of delay-Doppler
maps (DDMs), and the peak value of each DDM should, in theory, be
sensitive to the dielectric constant and the roughness of the surface
(Egido, 2013; Masters, 2004). Multiple other studies that use GNSS-R
data over land show examples of DDMs (e.g. (Camps et al., 2016; Chew
et al., 2016; Clarizia et al., 2009; Foti et al., 2015)), and we invite
readers to view these papers for examples. The peak value of the DDM is
also going to be affected by other variables unrelated to the reflecting
surface, such as the range and antenna gain (De Roo and Ulaby, 1994).
We correct for these variables assuming a coherent reflecting surface:
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where: Pr is the total scattered coherent power (the peak value of the
DDM), Pt is the transmitted RHCP power, Gt is the gain of the trans-
mitting antenna, Rts is the distance between the transmitter and the
specular reflection point, Rsr is the distance between the specular re-
flection point and the receiver, Gr is the gain of the receiving antenna, λ

Fig. 1. Schematic of the GNSS-R technique. A GNSS
satellite (Tx) transmits a signal towards the Earth's
surface. Part of this signal reflects in the forward
(specular) direction and back into space. A GNSS-R
receiver (Rx) onboard a low Earth orbiting satellite,
with a downward looking antenna, records this
signal. The point on the Earth's surface where the
signal reflects depends upon the positions of the
transmitting and receiving satellites. The roughness
of the surface at the reflection point determines the
spatial resolution of the signal, with rougher
(smoother) surfaces producing incoherent (coherent)
reflections and larger (smaller) spatial footprints.
The ocean (blue) is often rougher than land (green),
resulting in a larger footprint. The receiver integrates
the reflected signal over a period of time, which
elongates the spatial footprint in the along-track di-
rection. (For interpretation of the references to
colour in this figure legend, the reader is referred to
the web version of this article.)
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Fig. 2. CYGNSS observations of Γsurface (defined below) over the Amazon basin (top) and Australia (bottom), for 2018. Here, we sorted the observations such that the
highest values of Γsurface are plotted on top of observations close by with lower values of Γsurface. Higher values of Γsurface are found over water bodies and saturated
land, or over regions without significant topography. Black outlined boxes delineate the two test regions used in this study.

Fig. 3. a. The relationship between soil moisture and Γsurface, for different values of surface roughness. b. The relationship between surface roughness and Γsurface, for
different values of soil moisture. Also shown is the relationship between surface roughness and Γsurface when the surface has a dielectric constant typical of water.
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Fig. 4. Depiction of the modeling scenarios used in this study. Parameters used in the model for each scenario are shown in Table 1.

Fig. 5. a. Landsat image of a tributary to the Amazon River (path 232, row 061) on August 6, 2017. CYGNSS observations of surface reflectivity are overlaid for the
time period August 6 – September 7, 2017. b. MNDWI derived from the Landsat image using the cloud mask. Colour bar was artificially truncated at 0.3. c. Water
mask resulting from thresholding the MNDWI image in (b). The black outlined box is the region shown in (d). d. Close up of the water mask, with examples of
CYGNSS footprints overlaid. Footprints may contain a mixture of dry land and open water.
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is the GPS L1 wavelength (19 cm), and Γsurface is the reflectivity of the
surface. Here, we convert all terms to dB and solve for Γsurface:

= − − − + + −
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Currently, the GPS equivalent isotropically radiated power (EIRP)
(PtGt) is only being minimally corrected for, by using lookup tables of
how EIRP should vary according to the specific GPS satellite. However,
it is well known that the GPS transmit power can and does vary de-
pending on location and over time. In this paper, we expect variability
in Pt will introduce between 0.24 and 2.5 dB of uncertainty (Gleason
et al., 2019; Steigenberger et al., 2019). Future versions of the CYGNSS
data are expected to take these variations into account.

Surface reflectivity can also be affected by incidence angle, much in
the same way backscatter observations are affected by incidence angle
(Clapp, 1946; Mladenova et al., 2013; Ulaby et al., 1978). One can
correct for the effect of local incidence angle on Γsurface with the fol-
lowing:

= −Γ Γ 10 logcos θn
surface surface (3)

where θ is the angle of incidence, and n is a parameter, which normally
varies between 0 and 2 (Clapp, 1946; Mladenova et al., 2013), with
larger values being used for rougher surfaces. Here, we use n= 1 in our
corrections of incidence angle, as higher values appeared to overcorrect
for incidence angle variations. The average correction using Eq. 3 in the
examples we will show was only 1.28 dB and thus does not significantly
affect our results.

Because GNSS-R is a relatively new technique, the spatial resolution
of the signal over the land surface is still being quantified. Unlike other
microwave remote sensing instruments, the spatial resolution of
CYGNSS is not determined by the size of the antenna. Instead, it is a
function of the roughness of the surface, with extremely rough surfaces
producing reflections coming from a larger area than perfectly smooth
areas. The published spatial resolution of CYGNSS is 25 × 25 km
(Clarizia and Ruf, 2016). This is derived from the assumption that the
rough ocean surface produces incoherent reflections as well as the fact
that the CYGNSS data processing uses information from several pixels
in the DDM surrounding the specular reflection point, which enlarges
the total reflected area. However, if the surface is completely smooth
and reflections are predominantly coherent, then the spatial resolution
is ~0.5 × 0.5 km for a low earth orbiting satellite like CYGNSS, though

Fig. 6. Same as Fig. 5, except for Lake Eyre in Australia, where (a) is a Landsat image (path 099 row 080) acquired on January 13, 2019. Overlaid CYGNSS data are
for the time period January 12–14, 2019. (b) MNDWI for (a). (c) Same as (a), except the Landsat data acquired on July 8, 2019. Overlaid CYGNSS data are for the
time period July 7–9, 2019. (d) MNDWI for (c). These are only two of the thirty-three Landsat 8 scenes used in this analysis. The water mask derived from (d) is
shown in Fig. A2.
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this also depends slightly on incidence angle (Katzberg and Garrison,
1996). The CYGNSS satellites themselves introduce an additional
complexity in that they integrate the received signal for a period of
time, which elongates the spatial footprint along the track. Until mid-
2019 a 1-s integration was used, which meant the smallest theoretical
footprint was 7 × 0.5 km. After mid-2019, integration time was de-
creased by half, which decreased the smallest theoretical footprint to
3.5 × 0.5 km. Higher incidence angles will elongate the spatial foot-
print by a few hundred meters. Here, we assume that the spatial foot-
print is the smallest theoretical footprint, while accounting for in-
cidence angle. This means that we neglect significant surface roughness
(root mean square (RMS) surface height deviation>5–7 cm), which
would lead to predominantly incoherent scattering (Balakhder et al.,
2019).

3. Model description

3.1. Model foundation

Models that describe the backscattering of microwave signals from
monostatic radars or the emission of microwaves for passive radiometry
have been studied for several decades. The majority of backscatter
models are concerned primarily with how signals scatter off of vege-
tation canopies, and nearly all of these describe a canopy in terms of
individual geometric components of the canopy: leaves, branches, tree
trunks, etc. The most complex microwave model could have several
parameters describing things like leaf shape and trunk diameter (e.g.,
(Burgin et al., 2011; Lang and Sighu, 1983; Ulaby et al., 1990)). Most
models that describe the forward-scattering GNSS-R scenario over land
are nascent in comparison and have not undergone extensive valida-
tion. The majority of the existing models have been converted from
discrete backscattering models (e.g., (Ferrazzoli et al., 2011; Pierdicca
et al., 2014)) or were developed for ocean surface applications (O'Brien
and Johnson, 2017).

Our model, by comparison, is more conceptual and simple to run,
requiring few parameters. The goal of using this model is not to explore
the details of GNSS-R signal scattering. Rather, the purpose is to con-
sider possible explanations for if and why the relationship between
reflectivity and inundation exhibits spatial variations. Our model re-
quires the following parameters: the fraction of a pixel that is in-
undated, the soil moisture and texture of the land surface that is not
inundated, the dielectric constant of water, and the micro-scale
roughness of both the land surface and the water. The output of the
model is the reflectivity of the surface (Γsurface).

Γsurface is determined by the surface dielectric constant and rough-
ness. For a bare surface and assuming that surface is a homogeneous
half space, calculating the surface reflectivity is relatively straightfor-
ward and is given by the following (Fuks, 2001):

=
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where: θ is the incidence angle of the incoming GNSS signal, εair is the
dielectric constant of air (1.0), and εsurface is the dielectric constant of
the surface at L-band. For water, εsurface is high (78.9 + 4.3i (Kaatze,
1989)). For soil, εsurface will vary depending on the soil moisture of the
surface and the soil characteristics, and these relationships are rela-
tively well known and can be determined from either lookup tables or
theoretical equations (e.g. (Dobson et al., 1985; Hallikainen et al.,
1985)). rh and rv are the horizontal and vertical reflection coefficients,
respectively. rh and rv can be converted to left-hand circular polariza-
tion (LHCP, which is the polarization of the GNSS-R antenna) via the
following equation:

= −r r r0.5( )lhcp v h (7)

We then calculate the reflectivity, and convert it to dB:

= rΓ 10log | |lhcpsurface 10
2 (8)

Optionally, micro-scale surface roughness can be included in the
calculation of the reflection coefficient:

= ×r S rlhcp rough r lhcp, (9)

where Sr is the surface roughness coefficient based on the modified
physical optics model (Bahafza, 2005; De Roo and Ulaby, 1996):

= −S πσ λexp( 2[2 cos θ/ ] )r
2 (10)

and σ is the RMS of the surface height deviations.
Measurements of σ are lacking due to the significant amount of time

Fig. 7. Model simulations of Γsurface using the scenarios presented in Table 1
and Fig. 2, for an incidence angle of 20 degrees. Model simulations for different
incidence angles are shown in Fig. A3.

Fig. 8. Observations of Γsurface from CYGNSS in the Amazon basin versus the
fraction of water within the CYGNSS footprint, derived from Landsat 8 MNDWI
(colored circles). Γsurface observations are colored by their dominant landcover
class, obtained from GlobCover 2009 (Defourny et al., 2009). Also shown are
the Dense vegetation model simulations (black and green lines). (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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required to obtain them, and also because different techniques of
measuring σ often produce different results (Thomsen et al., 2015).
Other microwave remote sensing satellites (e.g. NASA's Soil Moisture
Active Passive mission (SMAP)), which also require knowledge of σ,
tend to parameterize σ using assumptions based on landcover class
(Peng et al., 2019). We will not do that here, as an appropriate para-
meterization of σ for GNSS-R would itself be a serious undertaking.
Published values of σ tend to be less than 2 cm for natural surfaces, with
higher values of σ (2–5 cm) for ploughed agricultural fields
(Hornbuckle et al., 2017; Snapir et al., 2014; Thomsen et al., 2015).

Examples of model output of Γsurface for different combinations of
realistic input values of εsurface and σ are shown in Fig. 3. Here, we show
εsurface converted to soil moisture for a loamy soil, with values obtained
from (Dobson et al., 1985). Fig. 3 shows that Γsurface increases as soil
moisture (and hence, εsurface) increases, and Γsurface decreases as surface
roughness increases. These relationships are non-linear. However, in
realistic scenarios where soil moisture has a more limited range, they
might be approximated as linear, as was done in (Chew and Small,
2018). Observations of Γsurface from CYGNSS in the vicinity of in situ
soil moisture probes show good agreement with the model simulations
(see Appendix for examples). Also shown in Fig. 3b is the relationship
between Γsurface and surface roughness for the case when εsurface is set to
a typical value for fresh water (78.9 + 4.3i (Kaatze, 1989)). The re-
lationship is very similar to that simulated for a saturated soil, although
the magnitude of Γsurface is higher for all values of surface roughness.

3.2. Modeling heterogeneous footprints

Thus far, we have described how to calculate the reflectivity for a
surface of a given dielectric constant and modulate it for a given value
of micro-scale surface roughness using equations and formulations that
are found in many journal articles and textbooks. However, the rela-
tively large spatial footprint of CYGNSS all but guarantees that there
will not just be one dielectric constant within its field of view over land.
A more complicated model might consider the surface to be made up of
thousands of facets and assign different values of εsurface for individual
facets or groups of facets. Instead, what we will do here is categorize the
surface as either inundated or not inundated and calculate the fraction
of the surface that falls into either category. Assuming we know the
dielectric constant and roughness of both the inundated and not in-
undated fractions, we will calculate the surface reflectivity for the en-
tire surface as the weighted average of the reflectivities of the in-
undated and non-inundated areas, weighted by their fractional
coverage:

= × + − ×ρ ρΓ Γ (1 ) Γinundated drysurface (11)

where: ρ is the fraction of the CYGNSS footprint that is inundated,
Γinundated is the reflectivity of the water, and Γdry is the reflectivity of the
footprint that is not inundated. Here, although the subscript is dry, it
does not mean that it cannot have a high soil moisture content.

Fig. 9. The observed relationship between Γsurface and the fraction of water within an individual CYGNSS footprint for Lake Eyre. (a) The three sub-regions of Lake
Eyre. (b) Observations from Madigan Gulf. (c) Observations from Lake Eyre North. (d) Observations from Belt and Jackboot Bays. Also shown are the model
simulations from Table 1/Figs. 3 and 4 that best match the trends seen in the observations for a typical incidence angle of 20 degrees.
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3.3. Model scenarios

We will investigate whether the linear mixing assumption presented
in Eq. 11 is correct, using several simple model scenarios and com-
paring the results to actual observations. Fig. 4 depicts several different
scenarios that will be simulated by our model. These scenarios were
chosen because they represent end members for what might be en-
countered in the real world: some model scenarios will represent ex-
tremely vegetated environments, and others will represent perfectly
planar scenes, which would rarely occur in nature. In the first scenario
we assume that there is some amount of water within the CYGNSS
footprint, and that surrounding this water is land that is too vegetated
to produce any forward-scattered signal for CYGNSS to sense (Dense
vegetation / Smooth water). Real-world analogues of this scenario
could be thought of areas in the Amazon or Central Africa. In this
scenario, we will see whether our assumption holds that there is not
significant forward scattering without water underneath the vegetation.
In a complementary scenario, we will see what effect slight wind-
roughening of the water has on Γsurface (Dense vegetation / Rough
water).

Other scenarios modeled are also scenes with a prescribed amount
of open water, but the land surrounding that water is either flat enough
or bare enough that at least some amount of signal can be sensed by
CYGNSS. For these scenarios, we will change soil moisture, soil
roughness, and the roughness of the water itself to see the effects on
Γsurface. These scenarios are also shown in Fig. 4.

Table 1 shows the parameters used in each model scenario. Constant
parameters used across scenarios are the GPS wavelength (0.19 m), the
dielectric constant of water (78.9 + 4.3i (Kaatze, 1989)), and a loamy
soil texture. Except for the Dense vegetation scenarios, model simula-
tions were run varying the fraction of open water in the footprint from 0
to 1. For the Dense vegetation scenarios, a fractional water value of 0
produces no reflectivity, so these simulations were run for values be-
tween 0.015 and 1. Simulations were all run assuming an incidence
angle of 20 degrees (mode of CYGNSS incidence angle observations
~ = 25 degrees). Results for model simulations run using different
incidence angles are contained in the Appendix.

4. Corroboration data

In order to corroborate our model, we must compute the extent of
surface water within the spatial footprint of CYGNSS to compare with
real observations of Γsurface. However, there is no operational surface
water dataset or map that is both concurrent with CYGNSS and exists on
a similar spatial scale. Microwave remote sensing inundation datasets
usually rely heavily on radiometers, which have a spatial resolution
that is too coarse to be effectively compared with CYGNSS (e.g., (Du
et al., 2018; Schroeder et al., 2015)). Datasets derived from optical
remote sensing instruments like Landsat (e.g. the Global Surface Water
Explorer (Pekel et al., 2016)) or MODIS (e.g. the Dartmouth Flood
Observatory) are extremely useful to the hydrologic community,
though the available data is aggregated over time, either seasonally or

yearly for the Global Surface Water Explorer, or over 14 days for the
Dartmouth Flood Observatory. For our purposes, we need to know the
state of surface water for a shorter time period in order to be as con-
current with the CYGNSS data as possible.

In order to accomplish this, here we create our own inundation
maps for select regions by deriving the modified normalized difference
water index (MNDWI) from Landsat 8 data (Xu, 2006). Modified NDWI
(MNDWI) is calculated using the green and middle infrared (MIR)
bands recorded by Landsat 8 reflectance values:

=
−

+

MNDWI Green MIR
Green MIR (4)

A threshold is then applied so that any MNDWI values above the
threshold are considered to be open water, and anything below the
threshold are not. There is no hard and fast rule as to what the threshold
should be, and it is generally region specific. We manually determined
our thresholds after visually comparing Landsat images of our regions
of interest (described below) and resulting water masks. Because the
temporal resolution of Landsat 8 is every two weeks, we will only
compare concurrent or approximately concurrent CYGNSS data to
Landsat 8 scenes.

After we derived the open water masks from the 30 m resolution
Landsat 8 data, we used them to calculate the fraction of water within
each 7 × 0.5 km CYGNSS footprint. For each CYGNSS observation, we
found the Landsat 8 pixels within the CYGNSS footprint and divided the
number of open water pixels in the footprint by the total number of
pixels in the footprint to derive the fraction of water.

5. Benchmark test regions

We chose two different regions to compare Landsat 8 water masks
with Γsurface from CYGNSS. The two regions represent end member
scenarios for our modeling effort.

5.1. Amazon basin

The first test region is a portion of the Rio Negro, a tributary of the
Amazon (Fig. 5). This Landsat 8 scene has a significant amount of open
water surrounded by extremely dense vegetation, so dense that the
forward-scattered signal all but completely disappears without water
nearby (Fig. 5a). Because the Landsat 8 data cannot sense water un-
derneath vegetation, we will largely ignore the potential confounding
effects from obscured water on GNSS-R data and refrain from at-
tempting to quantify attenuation through vegetation canopies for this
analysis.

For this benchmark case, we used data from one Landsat 8 tile that
is centered at approximately −1.3 deg. S, and − 61.9 deg. W. The
Amazon Basin is a notoriously cloudy region, and it is relatively rare to
find a mostly cloud-free Landsat tile from which to calculate MNDWI.
The tile and specific acquisition (August 6, 2017) shown in Fig. 5 is one
of the most cloud-free days we were able to find during the time period
when CYGNSS data are available. For this specific area, inundation

Table 1
Parameters used in each model scenario. Soil dielectric constants were obtained from soil moisture content values using (Dobson et al., 1985) assuming a loamy soil.
Each scenario was run varying the fraction of open water from 0 to 1.

Model scenario Soil moisture (cm3 cm−3) Soil dielectric constant Soil / water roughness (m)

Dense vegetation / Smooth water – 1.0 — / 0
Dense vegetation / Rough water – 1.0 — / 0
Smooth dry land / Smooth water 0.02 2.8124 + 0.1087i 0 / 0
Smooth wet land / Smooth water 0.5 40.8661 + 4.8221i 0 / 0
Rough dry land / Smooth water 0.02 2.8124 + 0.1087i 0.03 / 0
Rough wet land / Smooth water 0.5 40.8661 + 4.8221i 0.03 / 0
Smooth dry land / Rough water 0.02 2.8124 + 0.1087i 0 / 0.02
Smooth wet land / Rough water 0.5 40.8661 + 4.8221i 0 / 0.02
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extent did not change significantly between August 6 and September 7
(the date for the next relatively cloud-free Landsat 8 acquisition), and
so we used any CYGNSS data recorded between these two dates and
compared them to the water mask derived from the August 6 acquisi-
tion. Thus, here we are not looking at changes in inundation over time
for a specific location, but instead quantifying how Γsurface varies spa-
tially due to inundation extent.

The total number of CYGNSS observations was 2123, all of which
are shown in Fig. 5a. The corresponding MNDWI data are shown in
Fig. 5b. The MNDWI threshold chosen for this tile was 0.3, though al-
tering the threshold had no effect on our conclusions; the resulting
water mask is shown in Fig. 5c. Fig. 5d shows a smaller portion of the
water mask, with several example CYGNSS footprints overlaid. These
footprints illustrate the concept of heterogeneity within each footprint,
as the area contained within one footprint can be a mixture of both
open water and dry land.

5.2. Lake Eyre, Australia

The second test region we chose is Lake Eyre in Australia (Fig. 6).
Dry for the majority of the year, Lake Eyre is extremely flat, with large
parts of the lake containing salt pans with minimal surface roughness
(Fig. 6a). We chose Lake Eyre as our second test region because it is the
converse of our first: the salt pan is so flat that one would expect non-
inundated land to still produce a detectable reflection. Static 9 km
global maps of σ from SMAP, which parameterizes σ based on landcover
class, also show that the Lake Eyre region is one of the flattest in the
world, with a mean σ of ~0.6 cm (Peng et al., 2019). See the Appendix
for further discussion of the SMAP static map of σ.

In the summer of 2019, Lake Eyre nearly completely filled, an event
that had not been experienced in decades (Fig. 6c). This region is not
nearly as cloudy as the Amazon, and so we were able to use several
Landsat 8 scenes for this test case. We compared CYGNSS observations
that were recorded±1 day of each Landsat acquisition for the full
CYGNSS period of record (2017–2019). Thus, in this example we are
quantifying how Γsurface varies through time as Lake Eyre floods and
subsequently dries up.

Overall, for Lake Eyre we used 33 Landsat 8 scenes from which to
derive water masks from MNDWI and compared them to 3210 CYGNSS
reflections. We chose a higher MNDWI threshold for Lake Eyre
(threshold = 0.7), as the bare salt flats produce very high MNDWI, even
when dry (Fig. 6d). Altering the threshold did not significantly change
the conclusions from this analysis (see Appendix for examples).

6. Results

6.1. Model scenarios

Modeled Γsurface versus surface water extent is shown in Fig. 7 for
the model scenarios described in Fig. 4 and Table 1. The black line
shows how Γsurface varies with increasing surface water extent for the
Dense vegetation / Smooth water scenario. As the amount of water
increases in the field of view, Γsurface increases, though not linearly,
with the steepest increases occurring when fractional water extent is
below ~0.2. Slightly roughening the water results in lower maximum
Γsurface (dark green line, Dense vegetation / Rough water scenario). This
indicates that one should expect lower Γsurface over larger, more wind-
roughened bodies of water than over smaller and calmer bodies of
water.

Conversely, when there is perfectly flat, smooth land, increasing
surface water extent does not produce as significant of an increase in
Γsurface because Γsurface is already relatively high even when there is no
water within the footprint. And, soil moisture has the potential to be a
significant confounding variable for scenes with no surface roughness.
The difference in Γsurface between Smooth dry land / Smooth water
(dashed pink line) and Smooth wet land / Smooth water (dashed blue

line) is ~9.5 dB when the fraction of water within the footprint is zero.
This soil moisture sensitivity falls within the bounds of what has been
found empirically in previous studies (Chew and Small, 2018). The
model shows that it would be difficult to detect an increase in in-
undation if the soil is smooth and already saturated (Smooth wet land /
Smooth water, dashed blue line), since the increase in Γsurface with
surface water extent is very small.

Adding 3 cm of microscale surface roughness (Rough dry and wet
land / Smooth water scenarios, pink and blue solid lines, respectively)
significantly decreases Γsurface with respect to the Smooth land sce-
narios, particularly when fractional water is low. A wet but rough soil
(Rough wet land / Smooth water, blue solid line) will produce lower
values of Γsurface than a dry but smooth soil (Smooth dry land / Smooth
water, pink dashed line). Γsurface from a rough and dry soil (Rough dry
land / Smooth water, pink solid line) will mimic Γsurface from the Dense
vegetation / Smooth water scenario (black solid line) except when there
is no surface water present, and even then, differences are slight. As the
amount of water in the scene increases, the influence of soil moisture
within the footprint on Γsurface decreases substantially regardless of the
soil surface roughness.

Fig. 7 also shows how Γsurface should vary for scenes in which the
surrounding land is perfectly flat but the water within the scene is
roughened (dash-dotted blue and pink lines). When the surrounding
land is dry (Smooth dry land / Rough water), Γsurface will still increase
slightly as the footprint fills with roughened water. However, when the
surrounding land is saturated (Smooth wet land / Rough water), Γsurface
will actually decrease as the fraction of water in the footprint increases.

6.2. Model corroboration

Now we will use observations from our two test regions (the
Amazon and Lake Eyre) to corroborate the general trends observed in
the model simulations. Unfortunately, there is a dearth of soil moisture
and σ observations from which to fully validate the model in our test
regions—there are no data consistently quantifying σ of land or water at
the 1 cm scale anywhere in the world. It is therefore infeasible to fully
validate the model at this time. However, we can corroborate the model
by looking to see whether general trends hold in our end member test
regions.

Fig. 8 shows how CYGNSS Γsurface observations change as the frac-
tion of open water within the footprint increases, for our Amazonian
test region. Here, observations are colored by their dominant landcover
class, as indicated by the GlobCover 2009 dataset. In the Amazon,
Γsurface is very low when there is little to no water in the footprint, but
Γsurface rises quickly when the amount of water in the footprint increases
from 0 to 0.2. After ~0.2, Γsurface still increases as water is added to the
footprint, but much more slowly. This trend falls within the Dense ve-
getation model scenarios, which are also plotted in Fig. 8. Recall that
the Dense vegetation / Smooth water scenario represented a scene
where reflectivity was determined only by the presence of completely
flat water, and that the Dense vegetation / Rough water scenario re-
presented a scene where reflectivity was determined only by the pre-
sence of slightly rough (RMS height = 2 cm) water. It is not un-
reasonable to assume that the water within the flowing tributary of the
Amazon could have some amount of roughness, particularly in the
wider stretches of river that are predominantly open water (blue points
in Fig. 8). As previously discussed, water masks derived from the optical
data used here will not sense water underneath a dense vegetation
canopy, and our analysis does not quantify whether or not the CYGNSS
data would be able to sense the obscured water, nor does it quantify
attenuation through vegetation canopies. However, there is a cluster of
observations in Fig. 8 designated as Flooded Forest that have anom-
alously high values of Γsurface but with fractional surface water extents
below 0.2. It is possible that Γsurface is higher for these points because
the GNSS reflection is responding to water underneath vegetation that
the Landsat 8 data was not able to sense.
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Fig. 9 shows how observed Γsurface changes in Lake Eyre due to the
presence of surface water. In this figure, we have subdivided Lake Eyre
into three different sub-regions, which are indicated by the colored
areas in Fig. 9a. We did this because we found that Γsurface behaved
differently as Lake Eyre flooded depending on the sub-region. Both
Madigan Gulf and Belt/Jackboot Bays are the major salt pans in Lake
Eyre, though Belt/Jackboot Bays are deeper than Madigan Gulf when
flooded. Lake Eyre North is not fully covered by salt pans, and thus
would be expected to have higher surface roughness in certain areas.

Fig. 9 shows that, across all three sub-regions, Γsurface is higher than
observed in the Amazon when there is little or no water within the
footprint. Observations within Madigan Gulf (Fig. 9b) almost fully fall
within the model simulations with zero soil surface roughness, which
might be expected of a salt flat. There is more variability in Γsurface in
Madigan Gulf when there is no water within the footprint than when
Madigan Gulf is completely inundated, which is also in line with the
model simulations.

Observations from Lake Eyre North (Fig. 9c), on the other hand, fall
within the envelope of simulations where the surface roughness of the
land is between 0 and 3 cm. This is expected, since not all of Lake Eyre
North is covered by salt pans. All observations of Γsurface less than
−12 dB come from the northeastern and eastern edges of the lake,
which appear to contain sand bars and other small topographic features
that would introduce roughness. Like Madigan Gulf, as the footprint
fills with water, the variability in Γsurface decreases, and all observations
of Γsurface are relatively high (>−7 dB).

Fig. 9d shows Γsurface over Belt and Jackboot Bays. Like Madigan
Gulf, Γsurface is high when the salt pan is not flooded. However, unlike
Madigan Gulf, once Belt and Jackboot Bays completely flooded, Γsurface
was, at times, very low. Although we cannot definitively prove this, we
suspect that this could be due to the fact that Belt Bay is the deepest
point in Lake Eyre and could be deep enough for ripples or even surface
waves to form once that part of the lake is completely filled. The de-
crease in Γsurface in Belt Bay can be seen in Fig. 6, where observations
within the middle of Belt Bay have lower Γsurface when flooded than
when dry.

7. Discussion

The observations over the Amazon and Lake Eyre shown in Figs. 8
and 9 follow general trends exhibited by the simple model proposed
here. As shown in the model, the salt flats of Lake Eyre only produced
small increases in Γsurface for increasing surface water, whereas Γsurface
in the Amazon increased significantly for small increases in surface
water.

Perhaps somewhat paradoxically, the rougher the terrain, the easier
it would be to retrieve inundation extent using CYGNSS data. This is
because an increased amount of water within one footprint will both
increase the dielectric constant of the surface in addition to suppressing
surface roughness (provided that the water is smoother than the land).

If the land is already as smooth or smoother than the water, then re-
flectivity only increases due to the increase in the dielectric constant.
This then begs the question—which end member scenario is most of
Earth's land surface closest to? If most of the Earth's surface is as flat as
Lake Eyre, then the confounding effects of soil moisture, not to mention
the uncertainties in transmitted power mentioned earlier, could lead to
large uncertainties in retrieved inundation extent. If, on the other hand,
the Earth's surface tends to be significantly more rough, then retrieving
inundation extent could be a more simple process. It is our opinion that
the majority of natural surfaces tend to lie within the middle of the two
end member scenarios proposed here, though quantifying this will be
the subject of future research.

As the observations from Belt and Jackboot Bays show, the decrease
in Γsurface due to the presence of ripples or waves could make retrieving
inundation extent for deeper and larger bodies of water more difficult.
However, given that the locations and extents of deeper and larger
bodies of inland water, like reservoirs, are generally well known, we do
not think this significantly detracts from the overall utility of GNSS-R to
be used for transient flooding events.

8. Conclusions

This paper presented a simple, quasi-conceptual model that related
the observations obtained by CYGNSS to inundation extent.
Observations, to a first order, fit the general trends exhibited by the
model. Future efforts should be made to obtain sufficient micro-scale
surface roughness data such that a robust validation study can be per-
formed.

CYGNSS has important implications for hydrologic applications that
require data to be collected more frequently and at a high spatial re-
solution. Although the current constellation of eight satellites requires a
few days to provide sufficient coverage over land, if there is enough
interest from the hydrologic community it is not unreasonable to as-
sume that more satellites will be launched in the coming years, vastly
improving temporal coverage.
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Appendix A. Appendix

A.1. In situ observations of soil moisture versus model simulations

Fig. A1. The relationship between in situ soil moisture and CYGNSS observations of Γsurface, for six in situ stations in the United States (colored stars). Locations of
each station are indicated by the corresponding colored stars in the map. Also shown are model simulations of how soil moisture and Γsurface should vary, depending
on σ. In situ data were obtained from the International Soil Moisture Network database (Dorigo et al., 2011). Observations of Γsurface were considered collocated with
each station if the specular reflection point fell within 10 km of the station.
Fig. A1 shows how CYGNSS observations of Γsurface vary with soil moisture, for six in situ soil moisture stations from three different networks (SCAN, USCRN, and
PBO). Model simulations agree with the empirical relationships. For example, observations of Γsurface near USCRN Elgin-5-S show the same trend with soil moisture
observed in the model, if the surface roughness (σ) near the station is between 4 and 4.5 cm. Similarly, Γsurface near USCRN Joplin-24-N agrees with model simulations
for cases when σ is between 3 and 4 cm.
Although the in situ observations shown in Fig. A1 show the trends observed in the model, we are not able to conclusively validate them without accurate ancillary
measurements of σ. If the model is correct, then the σ near the two PBO stations in Fig. A1 is higher than the other stations, with Koptis Farms and Joplin-24-N
indicating the smallest σ. When we compared what Fig. A1 indicated in terms of σ with the SMAP static map of σ at the 9 km scale, however, we found large
discrepancies. In particular, the SMAP estimates of σ for all stations shown in Fig. A1 were less than 1.15 cm, which is much less than, for example, the 5 cm of
roughness indicated by the model for the PBO stations. However, when viewed globally, 99.9% of the SMAP roughness values at the 9 km scale are less than 1.75 cm
(Peng et al., 2019). Some researchers are showing that, at least for agricultural landcover types, the SMAP estimates are σ are likely underestimating true σ, given
discrepancies between estimated and measured σ and resulting dry biases in the SMAP soil moisture retrievals themselves (Hornbuckle et al., 2017).
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A.2. Example of water mask for Lake Eyre

Fig. A2. Water mask derived from Lake Eyre for the MNDWI data shown in Fig. 6d with a threshold value of 0.7. Dark blues indicate regions that are open water, and
light blues are regions that are not inundated. The area in white has no data, as it was the edge of the Landsat tile.
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A.3. Variations in model simulations based on incidence angle

Fig. A3. Model simulations showing how varying the incidence angle will alter the relationship between the fraction of water within a CYGNSS footprint and Γsurface.
Fig. A3 shows how the model results presented in the main text would change, depending on incidence angle. As incidence angle increases, the effect of σ on Γsurface

decreases. Lower incidence angles result in lower Γsurface, for the same value of σ, as higher incidence angles.
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A.4. Changing the MNDWI threshold over Lake Eyre

Fig. A4. For Lake Eyre, how altering the MNDWI threshold will affect the fraction of water within the CYGNSS footprint, for thresholds of 0.5, 0.6, and 0.8.
Changing the threshold used to convert MNDWI to a binary water mask over Lake Eyre does not significantly change the results presented in this paper. A threshold of
0.7 was used in the main text, and Fig. A4 shows results from three different thresholds (0.5, 0.6, and 0.8). These results are very similar to those presented in the
main text. Lowering the threshold below 0.5 was not realistic, as doing so falsely identified the dry salt pans as water.
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