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Abstract GPS monitoring of solid Earth deformation due to surface loading is an independent approach
for estimating seasonal changes in terrestrial water storage (TWS). In western United States (WUSA)
mountain ranges, snow water equivalent (SWE) is the dominant component of TWS and an essential water
resource. While several studies have estimated SWE from GPS-measured vertical displacements, the error
associated with this method remains poorly constrained. We examine the accuracy of SWE estimated from
synthetic displacements at 1,395 continuous GPS station locations in the WUSA. Displacement at each sta-
tion is calculated from the predicted elastic response to variations in SWE from SNODAS and soil moisture
from the NLDAS-2 Noah model. We invert synthetic displacements for TWS, showing that both seasonal
accumulation and melt as well as year-to-year fluctuations in peak SWE can be estimated from data
recorded by the existing GPS network. Because we impose a smoothness constraint in the inversion, recov-
ered TWS exhibits mass leakage from mountain ranges to surrounding areas. This leakage bias is removed
via linear rescaling in which the magnitude of the gain factor depends on station distribution and TWS
anomaly patterns. The synthetic GPS-derived estimates reproduce approximately half of the spatial variabil-
ity (unbiased root mean square error �50%) of TWS loading within mountain ranges, a considerable
improvement over GRACE. The inclusion of additional simulated GPS stations improves representation of
spatial variations. GPS data can be used to estimate mountain-range-scale SWE, but effects of soil moisture
and other TWS components must first be subtracted from the GPS-derived load estimates.

1. Introduction

Winter snowpack in mountain headwater regions is a critical water resource in the western United States
(WUSA), accounting for as much as 70–80% of regional annual runoff and dominating the hydrologic
regimes of most watersheds (Doesken & Judson, 1996). Basin-wide snow water equivalent (SWE)—the
amount of water contained in snowpack—is a function of snow extent, depth, and density. SWE is one of
the most useful snowpack metrics in water budget forecasting as it improves the skill of streamflow models
and facilitates accurate predictions of water yield throughout the year (Koster et al., 2010). It is therefore crit-
ical to improve the accuracy and resolution of SWE estimates in snow-dominated watersheds.

Mountain SWE is currently estimated using in situ measurements, remote sensing products, and models. In
situ measurements, such as snow telemetry (SNOTEL) and snow course data, are the most accurate at very
fine spatial scales, but cannot accurately represent SWE over large areas, as snow accumulation is highly
spatially heterogeneous (Serreze et al., 1999). Snow cover and depth can be measured via satellite imaging
or airborne scanning lidar; however, SWE cannot be calculated from these data without distributed esti-
mates of snow density (Molotch, 2009; Painter et al., 2016). Modeling snow density introduces uncertainty
into estimates of SWE derived from remotely sensed snow depth data (Raleigh & Small, 2017). The GRACE
(Gravity Recovery and Climate Experiment) satellites directly measure changes in terrestrial water storage
(TWS)—defined as the total water mass stored on or near the land surface as snowpack, soil moisture, sur-
face water, groundwater, and in biomass (Wahr et al., 2004). GRACE data can be used to estimate changes
in snow mass if other components of TWS are known. However, uncertainty in the estimation of the numer-
ous other components of TWS, as well as the coarse spatial resolution and 2–6 month latency of the GRACE
data product make it unsuitable for real-time SWE monitoring at the mountain-range scale (Famiglietti &
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Rodell, 2013). Even newly developed GRACE mascon solutions at 18 3 18 resolution (e.g., Save et al., 2016)
are too coarse for mountain SWE monitoring, as the width of most mountain ranges is considerably less
than 100 km. Model-based estimates of SWE vary significantly from model to model and must be validated
against other SWE estimates, with which they do not always correlate well (Clow et al., 2012; Rutter et al.,
2009).

GPS (Global Positioning System) measurements of the solid Earth elastic response to loading have shown
promise as a means of quantitatively estimating changes in TWS. Bevis et al. (2005) estimated seasonal fluc-
tuations in surface water mass over the central Amazon basin from a single GPS station. Steckler et al.
(2010) used stream gauge, GPS, and GRACE data to estimate both solid Earth elastic properties and TWS
change due to monsoonal flooding in Bangladesh. Borsa et al. (2014) estimated total water mass lost during
the recent California drought using trends in median displacement from over 700 continuous GPS stations
in the WUSA.

The solid Earth undergoes instantaneous, reversible elastic deformation in response to changes in surface
or near-surface loading (Farrell, 1972). This deformation is most strongly manifested as vertical displacement
of Earth’s surface, which can be measured at the millimeter scale by GPS stations anchored in bedrock or
deep soil. The land surface depresses in response to hydrologic loading from precipitation and rebounds,
when unloading occurs through evaporation or runoff (Dong et al., 2002). The solid Earth response to load-
ing is largest near a load, but extends beyond the boundaries of the load itself (Na & Baek, 2011). Therefore,
displacement at each GPS station is an integrated response to loading at all distances. Data from a suffi-
ciently dense network of continuous GPS stations can thus be used to produce gridded estimates of
changes in hydrologic load. These estimates represent an improvement on TWS interpolated from in situ
point observations, which can suffer from the spatial aliasing of short-wavelength TWS variability.

Earth surface displacements due to nonhydrological forces such as tectonic uplift and glacial isostatic
adjustment also appear in GPS station positions, but these are primarily secular signals whose effects can
be removed by detrending (e.g., Borsa et al., 2014). In the absence of volcanic or seismic transients, changes
in hydrologic load have been shown to be the primary drivers of GPS vertical displacement on seasonal to
interannual timescales (Dong et al., 2002).

It has been proposed that seasonal changes in TWS, and therefore in GPS-measured vertical displacement,
in snow-dominated hydrologic regimes primarily reflect changes in SWE (Ouellette et al., 2013). Winter
snow loading in mountainous regions has been shown to cause downward vertical displacement of the
land surface of up to �12 mm—a magnitude that is readily resolved by GPS stations (Argus et al., 2014).
Ouellette et al. (2013) used vertical position to estimate SWE change. However, their one-dimensional
model provides a coarse approximation of true loading and does not consider changes in loading outside
the immediate vicinity of the GPS station. Argus et al. (2014) and Fu et al. (2015) estimated seasonal load
changes in the snow-dominated Sierra Nevada in California and Cascade Range in the Pacific Northwest,
respectively. A large fraction of the multiannual TWS loss found by Borsa et al. (2014) is likely attributable to
drastic decreases in mountain SWE.

The magnitude of error associated with GPS-based TWS estimates remains poorly constrained. There are no
ground truth TWS metrics of comparable spatial scale and coverage (Rodell & Famiglietti, 2002). Monitoring
SWE using GPS presents the added challenge of isolating the change in SWE from other components of
TWS affecting the seasonal hydrologic loading signal.

Previous studies addressing SWE estimation from GPS data have estimated error by comparison to in situ
measurements, remote sensing products, and hydrologic model estimates. Comparing GPS-inverted TWS
loads to SNOTEL station data is problematic (Fu et al., 2015; Ouellette et al., 2013). There is no way to
account for spatial variability in SWE beyond the limited SNOTEL capture area, and assumptions must be
made about the fraction of TWS change attributable to SWE. Ouellette et al. (2013) assumed 100% of TWS
change came from SWE, an assumption unlikely to be valid anywhere with significant soil or surface water.
The accuracy of comparisons between GRACE and GPS estimates (e.g., Argus et al., 2014; Fu et al., 2015) at
the mountain-range scale is not well known because the GRACE solution is susceptible to errors in grid cells
spanning the margins of mountain ranges, which encompass strong gradients in TWS loads. Moreover, as
both methods estimate TWS change, SWE must be isolated from the TWS signal in both cases. Comparison
to a hydrologic model (e.g., Argus et al., 2014; Fu et al., 2015) entails accounting for unknown or poorly

Water Resources Research 10.1002/2017WR021521

582



constrained errors within the model. Hydrologic models may also exclude components of TWS, thereby
potentially misattributing change in one component of TWS (e.g., groundwater) to another component
(e.g., SWE).

Here, we expand upon the approach of Fu et al. (2015) to quantify the accuracy of mountain SWE estimated
from GPS vertical position data. We use a realistic hydrologic (TWS) load distribution to both generate a syn-
thetic earth surface displacement field and to validate the inverted TWS result. A similar approach was taken
by Landerer and Swenson (2012) to quantify errors in GRACE. We first calculate synthetic displacements at
1,395 real GPS station locations from a series of gridded monthly hydrologic load anomalies (Figures 1 and 2).

Figure 1. Schematic of experimental design. (a) Gridded anomalies from an input hydrologic load for April 2010 drive (b) synthetic vertical displacements, sampled
at real GPS station locations (open circles). (c) Inverted hydrologic load anomalies are recovered from the GPS station displacements. (d) Error is quantified by
differencing input and inverted loads. Transects along A-A’ give profile views of (e) input load, (f) synthetic displacement, (g) inverted load, and (h) error across the
Sierra Nevada for latitude 39.448N, with surface elevation shown for reference (light grey).
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We then invert the synthetic displacement field to recover the monthly load anomaly at every grid point.
We finally compare the inverted and input loads in order to investigate how error varies with station density
and spatial loading patterns. The input loads are not intended to be a completely accurate representation
of real hydrologic loading; their purpose is to provide a known input with a realistic spatial distribution of
water mass. Thus, for this study, we take the input TWS anomaly to be an error-free load distribution from
which we can quantify error associated with the inversion and with the current distribution of GPS stations.
Quantifying these errors is crucial to developing this method into a viable product for water resources
monitoring.

In this study, we consider the accuracy of mountain-range-scale SWE estimated from synthetic GPS vertical
position data to address the question of whether continuous GPS data can be used to monitor seasonal
SWE accumulation and melt and fluctuations in peak SWE from year to year. We quantify error magnitude
in estimated SWE and its relationship to GPS station density in four mountainous subregions of the WUSA:
the Sierra Nevada, Pacific Northwest, Yellowstone area, and northern Rockies. We additionally investigate
the partitioning of the hydrologic load into SWE and soil moisture over the course of the snow accumula-
tion season. Last, we evaluate two potential improvements to the accuracy of SWE estimates made using
this method: (1) simulating increased station density to reduce gaps in the station network and (2) applying

Figure 2. Spatial mask based on SNODAS March average SWE (blue grid cells), and distribution of GPS station locations
(points) used in this study, shown relative to the full study domain (25�538N, 95�1258W). Colored boxes denote the indi-
vidual subregions: Sierra Nevada (purple), Pacific Northwest (red), northern Rockies (black), and Yellowstone area (green).
Only the blue grid cells within the boxes comprise the subregions as we have defined them.
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gain factors to the inverted result similar to those applied to the GRACE solution (Landerer & Swenson,
2012; Long et al., 2015).

2. Methods

2.1. Input Hydrologic Loads
We use input hydrologic (TWS) loads following Fu et al. (2015) consisting of SWE from the Snow Data Assim-
ilation System (SNODAS) and total column soil moisture from the North America Land Data Assimilation Sys-
tem (NLDAS-2) Noah model. SNODAS is the most advanced operational system for monitoring SWE at
relatively high spatial resolution, assimilating satellite, airborne, and ground measurements with output
from a snow mass and energy balance model (Carroll et al., 2001). NLDAS-2 provides a high-resolution
gridded estimate of total soil moisture storage (Xia et al., 2012), which is necessary to realistically model dis-
placement magnitudes. Ground truth soil moisture data from in situ probe networks are only available for
certain locations, and thus cannot be used as an input. Fu et al. (2015) found good correspondence
between the hydrologic loads predicted by these inputs and calculated from real GPS displacement data in
Oregon and Washington.

It would be possible to use an input load that only includes SWE. However, the inclusion of soil moisture is
likely to better represent true hydrologic loading, where soil moisture is a significant component of TWS. In
addition, inverting for an estimate of total TWS from vertical displacement data, then estimating, and
removing the soil moisture component, more closely approximates how GPS-based SWE estimation would
be carried out in practice.

We generated 151 monthly distributions of TWS from October 2003 to April 2016 on a 1=88 grid spanning
258N�538N and 958W�1258W. This domain represents the western half of the native NLDAS-2 grid; the
higher resolution (1 km 3 1 km) SNODAS data are reinterpolated onto this grid. Loads at grid points corre-
sponding to surface water bodies or the ocean were set to zero—we assume no temporal variations in load-
ing at these points. The TWS load is thus a known combination of SWE and soil moisture, with both varying
independently through space.

We converted all monthly loads to anomalies relative to the long-term average TWS load over the entire
151 month study interval. These anomalies, which are used to calculate synthetic displacements and vali-
date the inverted load estimates, are calculated independently for each grid cell from

TWSA x; y; tð Þ5SWE x; y; tð Þ1sm x; y; tð Þ2 SWE x; yð Þ1sm x; yð Þ
� �

; (1)

where TWSA is terrestrial water storage anomaly, SWE is snow water equivalent, sm is soil moisture, SWE is
long-term average SWE, sm is long-term average soil moisture, x and y are the spatial coordinates, t is time
in months, and all components are reported in mm of water equivalent. The anomalies relative to the long-
term average used here differ from monthly average anomalies, in which a given month (e.g., April 2011) is
compared to the long-term average for that month (e.g., all Aprils; Figure 3). Anomalies relative to the long-
term average have a mean of zero but preserve the shape of the annual water cycle, in which a loading
maximum is typically reached during the spring snow accumulation season, with subsequent hydrologic
unloading as snow melts and soil dries over the course of the summer and early fall. Generally, therefore,
the anomalies are positive in the spring (Figure 1a) and negative in the fall, although this is not necessarily
the case in times of extreme drought.

Use of TWS anomalies rather than absolute loads better approximates the inversion procedure that would
be used to estimate SWE from real displacement data. Raw GPS data are typically detrended to correct for
secular tectonic movement and glacial isostatic adjustment, yielding a displacement residual with a mean
of zero with fluctuations on timescales of months to several years (e.g., Chew & Small, 2014). The seasonal
cycle ordinarily dominates these fluctuations. When the displacement residuals are inverted for load, the
load time series will also be mean zero with fluctuations reflecting seasonal hydrologic loading and
unloading.

2.2. Forward Model
We calculated the expected load-induced vertical displacement at the location of each of the 1,395 GPS sta-
tions currently in operation in the study domain from the load anomaly distribution for each month (Figures

Water Resources Research 10.1002/2017WR021521

585



1b and 2). In practice, some stations—such as those exhibiting signs of poroelastic effects or transient volca-
nic deformation—would be omitted due to signal interference (e.g., Borsa et al., 2014). As this study used
only synthetic data and was concerned with quantifying error based on station density and loading charac-
teristics, we did not remove any stations from our analysis. Only �10% of stations are omitted in practice
(e.g., Borsa et al., 2014), thus the station distribution used in this synthetic experiment is reasonable.
Expected displacement at each GPS station location was calculated using the SPOTL (Some Programs for
Ocean Tide Loading) geophysical modeling program in nontidal mode. SPOTL takes a uniform grid of mass
anomalies and generates the corresponding elastic surface displacement at any point on the planet, assum-
ing a spherically symmetric Earth with depth-dependent elastic properties specified in a one-dimensional
rheological model (Agnew, 2012). We used multiple calls to SPOTL to generate synthetic displacements at
each station location for each of the 151 monthly load anomalies. Although we used SPOTL with a specific
choice of rheological model (Gutenberg-Bullen; Agnew, 2012), the vertical displacement response gener-
ated by most one-dimensional models converges at load distances greater than �10 km (Na & Baek, 2011).
Thus, the choice of rheological model is not critical to our analysis.

2.3. Inverse Model
Following the procedure of Borsa et al. (2014), we performed an inversion of the forward-modeled synthetic
GPS displacements to estimate the associated load on every grid cell of the 1=88 input grid. We regularized
our solutions using minimum curvature smoothing, incorporated as a set of additional constraints within

Figure 3. (top) Sierra Nevada monthly average hydrologic load (blue) and long-term average load (red) over October
2003 to April 2016, compared to monthly load over 2013 (green) from the input hydrologic load. (bottom) 2013 load
anomaly relative to the monthly average (blue) and the long-term average (red). This study utilizes anomalies relative to
the long-term average. Although April 2013 was dry relative to other Aprils (negative monthly average anomaly), it was
wet relative to the average for all months over the period of record (positive long-term average anomaly).
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the design matrix. Specifically, for each time step in our analysis, we
minimized the damped least squares problem

kGm2dk2
2 1 k2kLmk2

2; (2)

where d is a vector of observed vertical displacements at each GPS
station for the time step, m is the (unknown) equivalent water thick-
ness in all cells of a uniform model grid, G is a matrix containing the
displacement response at each station for a unit load at each cell of
the model grid (calculated using SPOTL), L is a smoothing matrix of
spatial second-differences, and k is a regularization parameter, with
higher values of k resulting in smoother solutions (Aster et al., 2005).
Additional details are provided in the supporting information Text S1.

We chose a model grid resolution of 1=88 and a k of 0.1 in order to minimize error in the inverted result (sup-
porting information Text S2). This high spatial resolution (relative to previous studies) and minimal smooth-
ing (low k) allow for better representation of the short-wavelength hydrologic load variability characteristic
of topographically complex mountain environments. Although we estimated the load for all nonocean, non-
surface water grid cells within the domain, we limited our analysis of error to SWE-dominated mountainous
areas. To do so, we created a spatial mask that excludes all grid cells with a March average SWE load less
than 100 mm based on SNODAS (Figure 2). This mask shows good correspondence with high elevation
areas in the WUSA. We truncate the spatial mask north of 48.58N to omit an area with very low station
density.

Fu et al. (2015) found that edge effects introduced error into the GPS solution to a distance of up to �38

between the area of interest and model domain boundary. Truncating the spatial mask at 48.58N establishes
a buffer �4.58 between the model domain boundary and any grid cell considered in this error analysis. As
this distance exceeds the threshold found by Fu et al. (2015), we ignore edge effects in this study.

2.4. Subregions
We selected four subregions of interest to test the accuracy of our estimated hydrologic loads for a range of
GPS station densities, and physiographic province sizes and shapes (Table 1). Each subregion is a subset of
the SNODAS-based spatial mask (Figure 2). The Sierra Nevada and Pacific Northwest subregions are long,
narrow mountain belts with comparatively high station density both within the boundaries of the subregion
and in the surrounding areas. Yellowstone is a small, roughly square area with relatively high station density
within the subregion but lower station density outside the subregion boundary. The northern Rockies sub-
region is larger and more complex in shape with relatively few stations, most of which are concentrated at
the southern margin.

2.5. Soil Moisture Fraction of TWS
In order to quantitatively estimate SWE from GPS data, it is necessary to partition the inverted estimate of
TWS change into its constituent parts. Although TWS includes all terrestrial water including surface and
groundwater, in this study we take TWS in snow-dominated hydrologic regimes to be a combination of
snow and soil moisture. We calculate the soil moisture fraction of the known input load in order to better
understand the relationship between SWE, soil moisture, and the time variability of surface displacements.
This metric gives the fraction of loading over the snow accumulation season that can be attributed to
changes in soil moisture rather than SWE.

A soil moisture fraction for each subregion is calculated as

Fsm5
Dsm
DTWS

; (3)

where Dsm is the change in NLDAS-2 soil moisture and DTWS is the change in TWS between the first snow-
fall of the accumulation season (i.e., the first month of the water year in which SNODAS SWE is nonzero)
and peak SWE. A separate soil moisture fraction is calculated for every year in the study interval. As solid
Earth elastic deformation is a linear process, the soil moisture fraction can be removed from the inverted
TWS estimate in order to compare input SWE and inverted SWE directly.

Table 1
Summary of Area and Station Density for WUSA Mountainous Subregions

Subregion
Areaa

(km2)
Number

of stationsb
Station density

( stations
10;000 km2)

Sierra Nevada 31,568 36 11.4
Pacific Northwest 44,157 18 4.08
Yellowstone 67,322 41 6.09
Northern Rockies 11,6740 15 1.28

aTotal area of grid cells included in each subregion (Figure 2). bNumber of
stations within the subregion boundaries as previously defined.
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2.6. Additional Stations
We investigated error reduction in the Sierra Nevada subregion by simulating two scenarios where GPS sta-
tions were added to the network within the subregion boundary. In the first, 10 stations were added at loca-
tions chosen to minimize interstation distance, thereby improving station coverage. This scenario is
analogous to a deployment strategy that could be adopted if additional stations were installed for the pur-
pose of monitoring changes in hydrologic loading. In the second, 100 additional stations were simulated at
random locations within the subregion (Figure 4). For both scenarios, the complete time series of synthetic
displacements was recalculated from the original load anomaly maps with the additional stations included,
then inverted to recover load.

2.7. Gain Factors
We further investigated error reduction through linear scaling of the inverted loads to better match the
known input loads. We considered two time-varying rescaling strategies—subregion gain factors and grid-
cell gain factors—designed to adjust the slope of the relationship between input and inverted load onto
the 1:1 line (representing perfect correlation between the two).

To estimate the subregion gain factors, we consider the average inverted load relative to the average input
load over each of the four mountainous subregions, performing a separate analysis for each month of the
year. For a given month (e.g., March), we calculate a regression coefficient and constant (i.e., slope and inter-
cept) between all subregion-averaged input and inverted loads from 2003 to 2016 (Figure 5). For the Sierra
Nevada subregion, for example, the resulting March regression constant was 7 mm, indicating an expected
average inverted load of 7 mm for an average input load of 0 mm. The regression coefficient was 0.81, indi-
cating that the subregion-averaged inverted load was �81% of the subregion-averaged input load for any
given March in the study interval. We rescaled the inverted load in each cell of the subregion by subtracting
7 mm then dividing by 0.81, thereby adjusting the relationship onto the 1:1 line.

Figure 4. March 2011 (a) input load, (b) inverted load from actual GPS station distribution, (c) inverted load with 10 simu-
lated additional stations, and (d) inverted load with 100 simulated additional stations over the Sierra Nevada subregion.
Real station locations are yellow points; simulated stations are red points. The solid blue line is the California-Nevada bor-
der. Each grid cell is 1=88.
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For the grid-cell gain factors, we use the same procedure described above, but calculate the 12 monthly
gain factors on a grid-cell-by-grid-cell basis. Thus, for a given month (e.g., March), each grid cell in the subre-
gion is scaled by a different value.

In both cases we use different gain factors for each month of the year to account for seasonal variations in
hydrologic loading patterns. Use of a time-invariant gain factor fails to address important differences in loading
characteristics between, for example, the annual maximum and minimum snow loads. At peak SWE, a large
load gradient follows the topographic gradient between snow-dominated mountains and the surrounding low-
lands. By contrast, the early fall is characterized by much more uniform loading between mountains and low-
lands due to the lack of mountain SWE. As we discuss below, the presence or absence of a load gradient
profoundly impacts error magnitude. Thus, the magnitude of the gain factor applied to the inverted result must
be allowed to vary seasonally. For each subregion, the magnitude of the gain factor reaches a maximum at the
time of peak SWE—when load gradients between mountains and surrounding areas are the strongest—and
declines to a minimum in the early fall (Figure 6). We chose to apply the grid-cell gain factors for similar reasons.
Load gradients vary significantly at short-wavelengths in mountain environments, and thus individual rescaling
of grid cells may be preferable for error reduction at fine spatial scales (e.g., supporting information Figure S3).

The gain factors we calculate are optimal for the subregion, station distribution, inversion resolution, and k
used in our analysis. For a different distribution of GPS stations, a differently defined subregion, or a

Figure 5. Subregion-averaged input load versus inverted load for all Marches in the time period analyzed. Blue points represent the unscaled relationships; red
circles represent the relationships scaled onto the 1:1 line. The dashed (unscaled) and solid (scaled) lines are best-fit lines for each data set. RMSE relative to the
1:1 line is reduced by scaling for all subregions except the northern Rockies.
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different k, our gain factors would not be optimal and thus would need to be recalculated. Specifically,
higher k requires greater scaling (discussed below) as high magnitude input loads are redistributed over
larger areas in the inversion (supporting information Figure S4).

As the gain factors were calculated from relationships between input and inverted loads, it was necessary
to test their utility beyond the loading derived from NLDAS and SNODAS. To validate the gain factors, we
produced two additional load anomaly time series in which the original hydrologic load was nonlinearly
perturbed (supporting information Text S3). We performed a full forward model and inversion for each
perturbed time series, then scaled the inverted results with both empirically derived gain factors from the
original time series. We finally compared the scaled inverted results back to the perturbed input time
series.

It is well established that spatial patterns of snow accumulation are consistent from year to year, except in
cases of extreme anomalies (Schirmer et al., 2011). This suggests that stable relationships should exist
between input and inverted loads for any given grid cell. However, as we discuss below, load redistribution in
the inverted result due to smoothing and the irregular distribution of GPS stations introduces noise into this
relationship at many grid cells. Thus, nonlinear perturbation is a way of testing the ability of the gain factors
to reduce error when the load distribution deviates from its normal spatial pattern. Error reduction in the per-
turbed time series by the empirically derived gain factors supports the idea that model-derived gain factors
can be applied to results inverted from real GPS data (supporting information Tables S1 and S2).

3. Results

3.1. Accuracy of Inverted Hydrologic Loads
The inversion accurately reproduces the seasonal cycle of hydrologic loading averaged over each subre-
gion, regardless of the load’s spatial variance or interannual variability (Figure 7). Both the Sierra Nevada
and Pacific Northwest have snow loads with high spatial and interannual variance, while Yellowstone and
the northern Rockies have lower-variance loads with a more consistent seasonal cycle. In all cases, the

Figure 6. Subregion gain factor magnitude by month, calculated as the inverse of the regression coefficient for the rela-
tionship between subregion-averaged input and inverted loads. Higher magnitudes indicate more leakage and corre-
spond to peak annual SWE, when load gradients are expected to be highest.
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timing of seasonal loading and unloading in the input model is accurately reproduced by inverting the syn-
thetic GPS station displacement field.

While the shape of the seasonal loading time series is well captured, the inversion systematically underesti-
mates the magnitude of peak positive and negative loading (Figure 7). For both positive and negative loads,
the magnitude of the error increases nearly linearly with the magnitude of the load (Figure 8). All four sub-
regions exhibit similar load-error relationships, in which average error becomes more negative with increas-
ing average load. This relationship is manifested in the subregion time series as a reduced amplitude of
seasonal loading in the inverted result compared to the input load (Figure 7).

At the mountain-range scale, year-to-year variations in peak hydrologic load are well represented. March
average input and inverted loads are highly correlated in all subregions (Figure 5). Three of the four subre-
gions have r2> 0.98 for this linear relationship, while the northern Rockies subregion has a slightly lower r2

(0.94). The inverted load is biased low relative to the input load, evident as a slope <1 in the best-fit lines
(Figure 5). The inverted load can be rescaled to correct for this bias, yielding accurate representation of the
year-to-year changes in TWSA (discussed below).

Average March and September error metrics for each subregion are summarized in Table 2. March and Sep-
tember are the months of maximum and minimum loading, respectively. They represent the months where
absolute load is most underestimated. We define bias as the difference between the average inverted load
and average input load over all grid cells within a region of interest. For each subregion, we also calculate

Figure 7. TWS anomaly averaged over each subregion. A low bias is evident in the magnitude of the inverted load (red) relative to the magnitude of the input
load (blue). Time series of ubRMSE (green) indicate that maximum error at the grid cell scale occurs at or shortly after peak annual loading.
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an unbiased root mean square error (ubRMSE) after bias correction of
the inverted load. We normalize bias and ubRMSE by the subregion-
averaged input load for that month, giving error as a percentage of
the average load over the subregion. March normalized bias for the
Sierra Nevada, Pacific Northwest, and Yellowstone ranges between
15% and 20%. The northern Rockies subregion, which has consider-
ably lower station density, has a normalized bias of 29%. March nor-
malized ubRMSE ranges between 50% (Sierra Nevada) and 65%
(Yellowstone) for the four subregions. The corresponding error metrics
for September are similar in magnitude. These results demonstrate
that the subregion in which the average input and inverted loads are
the closest, is not necessarily the subregion in which the inversion
best reproduces the spatial pattern of the input load on a cell-by-cell
basis.

Because of smoothing, the displacement generated by a high-
magnitude load over a small region of the input grid is inverted to
yield a lower magnitude load over a larger area. This inversion ‘‘leak-
age’’ of some of the load in a given grid cell into surrounding grid cells
is responsible for both the largest magnitude errors at the grid-cell
scale and the systematic underestimation of average loading at the
subregion scale. Within the Sierra Nevada subregion, for example, the
input load map often contains single cells with high-magnitude loads

surrounded by cells with much smaller loads (Figure 4a). This pattern is particularly common at the peak of
the snow accumulation season (March–April). When the displacement fields from these months are
inverted, the high-magnitude loads are distributed to surrounding grid cells, resulting in a dramatic load
underestimation in the high-magnitude grid cell, and a slight load overestimation in the grid cells around it
(Figures 1h and 4b). At the regional scale, relatively high-magnitude mountain snow loading is distributed
into surrounding areas that have much smaller loads (Figure 9). The magnitude of average loading is under-
estimated by the inversion within the Sierra Nevada subregion but overestimated in a band �4 grid cells
wide outside the subregion boundary. Thus, the slope of the relationship between input versus inverted
load is <1 within the subregion and >1 in the surrounding area (Figure 10).

3.2. Soil Moisture Fraction of TWS
We present soil moisture partitioning results for the Sierra Nevada; results from other regions are similar.
Increases in SWE and soil moisture over the snow accumulation season are highly correlated, with a tempo-
ral lag in peak soil moisture of 1 month or less relative to peak SWE (Figure 11). Over the melt season, SWE

Figure 8. Average load versus average error for the Sierra Nevada subregion.
Each point represents the average values for an individual month. Average
error grows more negative with increasing average load. This trend is evident
in all subregions.

Table 2
March and September Error Metrics by Subregion

Month Subregion

Average
input

load (mm)

Average
inverted

load (mm)
Bias

(mm)
Norm.

Bias

Spatial
ubRMSEa

(mm)
Norm.

ubRMSE

Unscaled
RMSEb

(mm)

Scaled
RMSEc

(mm)

March Pacific Northwest 326 276 50 0.15 197 0.6 77 24
Yellowstone 186 149 37 0.2 121 0.65 40 10
N. Rockies 259 184 75 0.29 158 0.61 25 25
Sierra Nevada 341 283 58 0.17 170 0.5 76 17

September Pacific Northwest 2272 2241 231 0.11 123 0.45 32 2
Yellowstone 2163 2129 234 0.21 85 0.52 34 4
N. Rockies 2209 2156 253 0.25 93 0.44 53 8
Sierra Nevada 2247 2211 236 0.15 77 0.31 36 1

aSpatial ubRMSE is calculated by comparing input and inverted load at all points within the snow mask for each
region. bUnscaled RMSE is calculated by comparing average input and inverted load (blue points in
Figure 5). cScaled RMSE is calculated after temporal scaling (red circles in Figure 5).
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declines to 0 mm, 1–3 months before soil moisture reaches its annual minimum. The soil moisture compo-
nent of our input hydrologic load has a consistent seasonal cycle and low interannual variability, with an
annual range of 200–250 mm, regardless of snow conditions. The consistency of seasonal soil moisture fluc-
tuations may be a weakness typical of the finite soil depth used in land surface models (e.g., Houborg et al.,
2012). Interannual variability in SWE is much higher: the change in SWE over the snow accumulation season
was just 58 mm in 2015 compared to 967 mm in 2011. Because the lag between peak SWE and peak soil
moisture is small, and the soil moisture increase is similar from year to year, variations in the soil moisture
fraction (equation (3)) are largely determined by the amount of SWE. In high (low) SWE years, soil moisture
fraction is small (large). It varies from 0.2 in 2011 to 0.75 in 2015—a year in which there was virtually no
SWE in the Sierra Nevada. Thus, from 20% to 75% of TWS change over the snow accumulation season in the
Sierra Nevada can be attributed to soil wetting, with the remainder from snow. These results indicate sea-
sonal soil moisture changes are considerable. The magnitude of the soil moisture fraction is, however, con-
tingent on the magnitude of the soil moisture input—the accuracy of which is not well known. Inverted

Figure 9. Input load (left) and error (right) for April 2016 in the Sierra Nevada subregion. Grid cells with high-magnitude input loads have large negative error,
while adjacent cells—particularly those in areas lacking GPS stations—have large positive errors. This distribution of errors is evidence of leakage from high-load
cells to their neighbors due to both smoothing and the distribution of stations.

Figure 10. Scatters of average input load versus average inverted load within the Sierra Nevada subregion (left) and in
the area surrounding the subregion but excluding the subregion itself (right). The 1:1 line is shown in red. Within the sub-
region, the inversion underestimates the magnitude of loading. Outside the subregion, the inversion overestimates load-
ing, indicating some of the load from the subregion is distributed to grid cells outside the subregion boundary.
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TWS should not be considered an indicator of SWE alone, even in a snow-dominated hydrologic regime
such as the Sierra Nevada.

3.3. Additional Stations
There is a clear improvement in the estimation of peak average loading when stations are added to the net-
work (Table 3, supporting information Figure S5). March normalized bias is reduced from 17% to 10% in the
10 station case and to 6% in the 100 station case. March normalized ubRMSE is also reduced from 50% to
48% in the 10 station case and to 34% in the 100 station case. Similar reductions are evident in the Septem-
ber error metrics for the two scenarios. The reduction in ubRMSE indicates an improvement in the ability of
the inversion to reproduce spatial patterns of loading. This improvement is evident in the inverted load
maps for the base and additional station cases (Figure 4). The inversions with additional stations (plots c
and d) more accurately reproduce the input load (plot a) than the inversion without extra stations (plot b).

3.4. Gain Factors
Results from the inversion show a systematic underestimation of peak load magnitude due to smoothing-
related leakage. Although adding more stations ameliorates this problem, it is not a viable means of solving
it completely. Therefore, we considered the utility of scaling the inversion, similar to the approach taken for

Figure 11. Input load partitioned into its constituent parts (SWE, soil moisture), with soil moisture fraction over the snow
accumulation season.

Table 3
March and September Sierra Nevada Error Metrics for Scaled and Additional Station Cases

Average input
load: 341 mm

March
Average inverted

load (mm)
Average

bias (mm)
Normalized

bias
Average

ubRMSE (mm)
Normalized

ubRMSE

Unscaled 283 58 0.17 170 0.5
Subregion 341 0 0 175 0.51
Grid-cell 341 0 0 146 0.43
10 stations 307 34 0.1 163 0.48
100 stations 320 21 0.06 117 0.34

Average input
load: 2247 mm

September
Average inverted

load (mm)
Average

bias (mm)
Normalized

bias
Average

ubRMSE (mm)
Normalized

ubRMSE

Unscaled 2211 237 0.15 77 0.31
Subregion 2247 0 0 77 0.31
Grid-cell 2247 0 0 13 0.05
10 stations 2229 218 0.07 78 0.32
100 stations 2236 212 0.05 50 0.21

Note. Unscaled error metrics are given for comparison.
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GRACE TWS estimates (Landerer & Swenson, 2012; Long et al., 2015). Subregion and grid-cell gain factors
were calculated to bring the relationship between inverted and input loads onto the 1:1 line (e.g., Figure 5).

Subregion scaling is critical to generate accurate estimates of year-to-year changes in SWE at the mountain-
range scale. Inverted TWS anomalies during the snow season underestimate the magnitude of positive
input anomalies due to smoothing-induced mass leakage away from snow-dominated areas (Figure 5).
From May through June, the gain factor for the Sierra Nevada is approximately 1.2 (Figure 6). By contrast,
the gain factor is very close to 1.0 between August and October, when the load in the mountains is similar
to that in the adjacent valleys. Prior to scaling, the RMSE between input and inverted peak SWE is �75 mm
in the Sierra Nevada and Pacific Northwest, 40 mm for Yellowstone, and 25 mm for the northern Rockies
(Table 2). These errors are approximately 20% of the average annual load. After scaling, the RMSE is
�20 mm or less in all subregions—the magnitude of peak SWE from the inversion, including fluctuations
from year to year, matches the input load almost exactly (supporting information Figure S5).

Like the subregion gain factors, the grid-cell gain factors yielded subregion-averaged inverted loads identi-
cal to the average input loads. Moreover, application of the grid-cell gain factors reduced ubRMSE to 43% in
March and 5% in September. For both months, the grid-cell gain factor represents the most effective means
of reducing both bias and ubRMSE.

4. Discussion

4.1. Area-Averaged Load Estimation
Year-to-year variations in peak loading are well represented at the mountain-range scale. The relationship
between subregion-averaged input and inverted loads is linear with a high r2 across all four subregions (Fig-
ure 5). Even the northern Rockies subregion, which has a very low station density and uneven station distri-
bution relative to other subregions, has an r2 of 0.94. This suggests that the station density and distribution
necessary to accurately capture annual variations in peak loading at the mountain-range scale are already
in place for most, if not all, of the major snow-dominated environments in the WUSA. Although smoothing
introduces a leakage bias—causing the average inverted load to underestimate the average input load—
the high correlation between the two loads allows for bias correction via simple linear scaling. At the spatial
scales we tested, gain factors were effective at reducing leakage bias to zero or near zero. Thus, empirically
derived gain factors allow for accurate TWS estimation via GPS displacement at the mountain-range scale.

Our procedure for deriving empirical gain factors for GPS-estimated loads consists of the following steps:

1. Based on the area and time interval of interest, eliminate any GPS stations that are subject to significant
data gaps or are affected by deformation or poroelastic effects.

2. Using a realistic distribution of water mass from models or remote sensing, calculate expected displace-
ment at each GPS station location for a representative epoch. Invert for load using a range of k values.
Choose k that minimizes error between the input and inverted loads over the area of interest.

3. With the chosen station distribution, k, and inversion resolution, calculate synthetic displacements and
invert for load estimates. The calculation should be repeated over the full-time interval of interest using
data from intervals with both normal and anomalous loading. Calculate gain factors based on the rela-
tionship between input and inverted loads.

4. Process real GPS data from the chosen station distribution over the time interval of interest to remove
effects from atmospheric loading, earthquake-related offsets, etc. (e.g., Argus et al., 2014; Borsa et al.,
2014; others).

5. Invert real GPS data, and apply gain factors from synthetic experiments to the inverted load estimates.

Although this study has focused on area-averaged load estimation at the mountain-range scale, estimates
at the basin or catchment scale are more likely to be useful in water management decisions. An important
next step, therefore, will be testing the accuracy of GPS-based estimates of load over individual catchments
and drainage basins. Smaller areas will suffer from a more substantial leakage bias. Below a certain spatial
scale or threshold number of grid cells, it is possible that the linear relationship between average input and
inverted loads will be lost, particularly in basins with no GPS station nearby. In addition, many basins
include both snow-dominated mountain headwater regions and lowlands where snow is absent. They
therefore will likely be subject to leakage both out of the snow-dominated zone and into the nonsnow-

Water Resources Research 10.1002/2017WR021521

595



dominated zone, the effects of which we have not considered here. In such cases, scaling may not be as
useful in terms of increasing the accuracy of area-averaged load estimates.

Fu et al. (2015) modeled GPS vertical displacement and TWS change in the Cascade Range of Oregon and
Washington following the same procedure and using the same input load described here. The Cascade
Range comprises the majority of our Pacific Northwest subregion, which also includes the Olympic Range.
Their study found a maximum difference between the inverted result and input load of �8% of the change
in loading over the snow accumulation season. We calculate an average March normalized bias of 15%,
nearly double that presented in Fu et al. (2015). This discrepancy most likely stems from differences in the
regions considered. Our spatial mask removes any grid cell with less than 100 mm average March SWE. The
Cascade Range as defined in Fu et al. (2015) extends outward to grid cells omitted by our spatial mask. The
wider spatial extent of the Cascade Range defined in Fu et al. (2015) captures more of the leakage from
snow-dominated areas. Here, some mass is lost to leakage beyond the subregion boundary and is therefore
omitted from the inverted result. Extending our subregion boundaries outward to an extent similar to that
in Fu et al. (2015) reduced the amount of leakage across the boundary and lowered March normalized bias
to �10%.

4.2. Grid-Cell Scale Load Estimation
At the grid-cell scale (1=88), limited GPS station coverage reduces the ability to resolve short-wavelength spa-
tial patterns, even when minimal smoothing is used. Since there is insufficient information in the GPS obser-
vations to fully reproduce the input load, short-wavelength features are largely determined by the
smoothing constraint in the inversion. The amount of leakage from grid cells with high-magnitude input
loads depends both on the magnitude of loading in neighboring grid cells and the local distribution of GPS
stations. Spatial patterns in the input loads are relatively consistent from year to year; however, small incon-
sistencies in the input load are magnified in the inverted load due to gaps in the station network. This vari-
ability in leakage introduces scatter into the relationship between input and inverted loads, particularly in
grid cells for which there is no GPS station in the immediate vicinity. Calculating gain factors for grid cells
without a strong linear relationship between input and inverted loads does not significantly improve load-
ing estimates for these grid cells relative to the unscaled inverted result. Thus, grid-cell scaling cannot per-
fectly reproduce spatial loading patterns, although it can provide modest error reduction at the grid-cell
scale.

While scaling may not be effective, our results suggest grid-cell-scale load estimates can be improved
through increases in station density. Improvements to Sierra Nevada ubRMSE were minimal in the 10 sta-
tion case but substantial in the 100 station case (Figure 4). Reductions to grid-cell-scale error comparable to
those found in the 100 station case are likely possible with fewer additional stations if they are chosen to
minimize interstation distance rather than placed randomly. Increasing station density also reduces leakage
from areas of high loading, thereby improving the accuracy of both the magnitude and spatial distribution
of loading in the inverted result. Similar improvements are likely possible in the other subregions.

Although increasing station density is a viable means of grid-cell-scale error reduction in a modeling study,
it may not represent a realistic means of improving GPS-based SWE monitoring at very fine spatial scales.
We have shown that large increases in the number of stations within a subregion are necessary to accu-
rately reproduce spatial loading patterns of SWE. Installation and maintenance costs may make increases to
the density of the GPS station network of the magnitude required infeasible. Moreover, at spatial scales up
to �10s of km, near-surface heterogeneity in rheological properties (e.g., between different rock types) can
cause local variations in the solid Earth response to loading (Na & Baek, 2011; Wang et al., 2012). A one-
dimensional rheological model such as we use is insufficient to fully describe the Earth elastic response to
loading at these fine spatial scales, limiting the benefit from adding stations in regions that are already well
instrumented. On the other hand, increasing station density may reduce the uncertainty associated with
noise in the daily GPS displacement record, thereby affecting a portion of the total error budget we have
not considered in this study.

Increasing the density of the current network should remain a priority; however, future work should also
explore incorporating data from in situ monitoring networks such as SNOTEL to constrain the spatial distri-
bution of mountain SWE at high spatial resolution. Gridded estimates of SWE produced from GPS vertical
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displacements could also be validated or improved via comparison to remotely sensed snow cover maps
from satellite or airborne lidar imaging.

While the spatial loading patterns produced by the inversion do not accurately reproduce the input, they
represent a substantial improvement over the GRACE solution. We have shown that ubRMSE increases at
coarser spatial resolutions—as short-wavelength variability is incorporated into a single spatially averaged
grid cell value (supporting information Figure S1). The GRACE solution is available at approximately 18 grid
cells, making each grid cell a spatial average of 64 grid cells at the 1=88 spatial resolution discussed here. In
consequence, the ‘‘mountain-range scale’’ for the GRACE solution can be as few as five grid cells. Moreover,
a single GRACE grid cell may contain part of a long, narrow mountain belt as well as the lowlands to either
side (Argus et al., 2014). The hydrologic load from GRACE for such a grid cell, while an accurate spatial aver-
age of loading over the area it contains, gives very little information about loading occurring solely in the
mountains. Spatial patterns of loading at even finer scales cannot be represented at all.

4.3. Estimating SWE From TWS
The results presented above document the error in TWS anomaly estimation at the mountain-range scale.
However, SWE is the most critical water resource metric in mountainous environments, so estimates of this
variable are more useful than TWS anomalies for water resources management. Vertical displacement
recorded by GPS measures TWS anomalies. These anomalies must be partitioned into TWS components
(SWE, soil moisture, etc.) or assumed to be entirely associated with SWE accumulation and loss.

The assumption that a change in TWS corresponds entirely to a change in SWE is unlikely to be valid except
in high alpine regions lacking soil cover or significant surface water bodies. Depending on the year, any-
where between 25% and 80% of TWS change over the snow accumulation season in our input load is attrib-
utable to SWE, with the remainder coming from soil moisture. In reality, the percentage of TWS change
attributable to SWE will be somewhat lower, as we do not consider changes in components such as ground-
water and surface water. The assumption that TWS change consists entirely of SWE would result in an over-
estimation of peak SWE, with the magnitude of error related to the soil moisture fraction. In 2011, for
example, change in Sierra Nevada average TWS over the snow accumulation season is 1,209 mm, while
change in SWE is 967 mm. Thus, 20% of the 1,209 mm TWS change comes from soil moisture. If other com-
ponents of TWS are ignored, SWE will be overestimated by 25% of its true value.

The alternative to assuming that all TWS change comes from SWE is to take a water balance approach,
where SWE is the residual after all other TWS components are removed. Numerous studies have adopted
this method to estimate water budget components using TWS from GRACE (e.g., Rodell et al., 2004, 2011;
Strassberg et al., 2009; others). Accurate estimation of the residual, however, requires accurate estimation of
all other components of TWS that change significantly over the snow accumulation season. The most
straightforward approach is to use hydrologic models and observational data to provide constraints on
non-SWE TWS components. This approach will always introduce errors; however, SWE is typically by far the
largest seasonally varying load in these environments. It therefore makes sense to derive TWS from GPS dis-
placements, and then calculate SWE as a residual by estimating the other components of the water budget.

A final source of error in SWE estimation is the several mm mean formal uncertainty in daily GPS vertical
positions (Amos et al., 2014). Previous studies have treated this uncertainty as random noise, removing it by
filtering or averaging daily data over monthly intervals (Fu et al., 2015; Ouellette et al., 2013; others). As we
have discussed monthly SWE estimates only, we ignore this uncertainty. However, it must be considered in
order to estimate SWE at higher temporal resolutions.

5. Conclusions

The GPS station network in the WUSA is dense enough to accurately monitor changes in hydrologic loading
at the mountain-range scale. The timing of seasonal loading is well captured in all subregions. Year-to-year
variations in area-averaged peak loading suffer from a leakage bias. However, this can be corrected via scal-
ing of the inverted result. At the grid-cell scale, the current GPS network fails to accurately reproduce the
input spatial loading patterns. While adding GPS stations would improve spatial loading patterns, the cur-
rent network already provides a substantial improvement over the GRACE solution in terms of monitoring
spatially variable loading in mountainous regions. In addition to establishing a denser GPS network, future
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work should make use of in situ SWE and remotely sensed snow cover data to constrain spatial loading pat-
terns in areas where GPS station coverage is lacking.

Accurate GPS-based mountain-range-scale estimation of SWE requires accounting for other components of
TWS. The accuracy of model or network-based estimates of soil moisture is critical to deriving SWE esti-
mates from GPS-based TWS anomalies. Spatiotemporal changes in surface and groundwater also have the
potential to significantly impact SWE estimates in certain locations. Accurate estimation of other compo-
nents of TWS will allow GPS-based SWE monitoring at high spatiotemporal resolution in well-instrumented
drainage basins—a crucial objective for water resources management in the WUSA.
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