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Abstract Knowledge of irrigation is essential to support food security, manage depleting water resources,
and comprehensively understand the global water and energy cycles. Despite the importance of
understanding irrigation, little consistent information exists on the amount of water that is applied for
irrigation. In this study, we develop and evaluate a new method to predict daily to seasonal irrigation
magnitude using a particle batch smoother data assimilation approach, where land surface model soil
moisture is applied in different configurations to understand how characteristics of remotely sensed soil
moisture may impact the performance of the method. The study employs a suite of synthetic data
assimilation experiments, allowing for systematic diagnosis of known error sources. Assimilation of daily
synthetic soil moisture observations with zero noise produces irrigation estimates with a seasonal bias of
0.66% and a correlation of 0.95 relative to a known truth irrigation. When synthetic observations were
subjected to an irregular overpass interval and random noise similar to the Soil Moisture Active Passive
satellite (0.04 cm3 cm−3), irrigation estimates produced a median seasonal bias of <1% and a correlation of
0.69. When systematic biases commensurate with those between NLDAS‐2 land surface models and Soil
Moisture Active Passive are imposed, irrigation estimates show larger biases. In this application, the particle
batch smoother outperformed the particle filter. The presented framework has the potential to provide new
information into irrigation magnitude over spatially continuous domains, yet its broad applicability is
contingent upon identifying new method(s) of determining irrigation schedule and correcting biases
between observed and simulated soil moisture, as these errors markedly degraded performance.

Plain Language Summary Irrigated agriculture is the world's largest consumer of global
freshwater producing more than 40% of global food, yet the amount of water being used in irrigation
remains largely unknown. This paper presents and evaluates a newmethod to estimate the amount of water
used in irrigation that involves giving computer models of the land surface different amounts of information
on soil moisture and then evaluating how well irrigation can be predicted. We show that the method can
accurately predict daily irrigation magnitude so long as the model simulation of soil moisture is closely in
line with observations. The method is also generally robust to common sources of error in a NASA
satellite‐based soil moisture. However, when differences between simulated soil moisture from operational
models and satellite‐based soil moisture are too large, then the method will require pre‐ or post‐processing
to correct errors between the two sources. This study provides a useful step toward producing new
estimates of irrigation while highlighting the importance of improving the realism of simulated
soil moisture.

1. Introduction

Irrigated land produces more than 40% of global food and agricultural commodity outputs on only 20% of
agricultural land worldwide (Vörösmarty & Sahagian, 2000). Irrigation is the largest anthropogenic use of
fresh water, consuming about 70–75% of the world's freshwater (Zhang et al., 2017), directly contributes
to groundwater depletion (Famiglietti et al., 2011; Rodell et al., 2009; Scanlon et al., 2012) and impacts the
water and energy cycles (Haddeland et al., 2006; Jiang et al., 2014; Ozdogan et al., 2010), underscoring the
importance of quantifying the magnitude of this flux. Despite its importance, fewmethodologies exist to pro-
duce a continuous, observationally based irrigation estimate. Most existing irrigation data sets focus onmap-
ping the occurrence of irrigation (Deines et al., 2017; Ozdogan & Gutman, 2008; Salmon et al., 2015) or rely
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solely on models to estimate irrigation magnitude (Haddeland et al., 2006; Jiang et al., 2014; Ozdogan et al.,
2010). As it stands there exist few published methodologies designed to estimate irrigation magnitude suita-
ble for global application. Here, we present a new methodology to use data assimilation (DA) with land sur-
face model (LSM) simulated soil moisture (SM) to estimate daily to seasonal irrigation magnitude at the
model's spatial resolution.

Historically, irrigation water use has been monitored using a power consumption coefficient assumption,
which estimates the amount of water being pumped for irrigation as a function of the power an irrigation
well draws (Hurr & Litke, 1989). However, the relatively small number of these in situ irrigation observa-
tions limits the large‐scale applicability of this method (Brocca et al., 2018). Most large‐scale irrigation data
sets rely on statistical surveys or simply identify areas equipped for irrigation (Siebert and Döll, 2000;
Thenkabail et al., 2005; Salmon et al., 2015). While these maps are generally spatially consistent over com-
monly irrigated areas, issues of accuracy arise at larger scales that could be improved through the incorpora-
tion of remote sensing (Liu et al., 2018). Attempts to map irrigation extent with remote sensing have
leveraged vegetation indices from Advanced Very High Resolution Radiometer (Loveland et al., 2000;
Thenkabail et al., 2008), Moderate Resolution Imaging Spectroradiometer 250 (Ambika et al., 2016;
Ozdogan & Gutman, 2008; Teluguntla et al., 2017), and Landsat 30 (Deines et al., 2017; Ozdogan et al.,
2006; Pun et al., 2017) satellite products. Most recently, remotely sensed SM from Sentinel‐1 has shown
potential to compliment vegetation index irrigation mapping techniques to produce irrigation maps at high
spatial resolutions and relatively high temporal resolutions (Bousbih et al., 2018; Gao et al., 2018).

LSMs have served a unique role in irrigation mapping. While they have traditionally lacked a formal irriga-
tion scheme, it is possible to infer irrigation by contrasting simulated land surface evapotranspiration with
remotely sensed observations that implicitly include an irrigation signal (Romaguera et al., 2012). Over
the past two decades, efforts to improvemodeled representation of irrigation have sought to assess the effects
of irrigation on LSM‐derived water and energy balances and to improve the representation of managed lands
in land surface schemes. LSM studies have shown that irrigation increases SM leading to greater evapotran-
spiration with increases in latent heat flux and decreases in both sensible heat flux and coupling between SM
and latent heat flux in water limited environments (Badger & Dirmeyer, 2015; de Rosnay, 2003; Haddeland
et al., 2006; Jiang et al., 2014; Lawston et al., 2015; Mahmood & Hubbard, 2002; Ozdogan et al., 2010; Tang
et al., 2007). This repartitioning of the surface energy and water balances causes lower surface air tempera-
ture and elevated atmospheric water vapor that contributes to the greenhouse effect (Boucher et al., 2004;
Haddeland et al., 2006; Jiang et al., 2014; Lawston et al., 2015; Ozdogan et al., 2010; Tang et al., 2007).
Frameworks to model irrigation within LSMs follow simple rules based on balancing available water supply
with plant and atmospheric water demand (de Rosnay, 2003; Haddeland et al., 2006; Ozdogan et al., 2010;
Tang et al., 2007). However, uncertainties in irrigation mapping and weather data can result in variations
of irrigation water demand of about 30% (Wisser et al., 2008). Irrigation estimates have typically been vali-
dated with local reports of annual consumptive water use (Haddeland et al., 2006; Ozdogan et al., 2010) or
evapotranspiration as a proxy for irrigation given the lack of irrigation monitoring (Lawston et al., 2015).
Therefore, despite recent advances, model irrigation studies remain largely under‐validated, particularly
at time scales less than 1 month.

Given the importance of constraining and validating these irrigation studies and lack of in situ data, attempts
to use remote sensing to monitor agricultural water use have been explored, primarily using remotely sensed
evapotranspiration (Droogers et al., 2010; Sun et al., 2017; van Dijk et al., 2018; Wu et al., 2015) and SM
(Brocca et al., 2018; Zaussinger et al., 2018). While SM retrievals are now available from a number of passive
microwave and scatterometer‐based instruments (El Hajj et al., 2017; Entekhabi et al., 2010; Gao et al., 2017;
Kerr et al., 2012; Kim et al., 2015; Wagner et al., 2013), a key challenge lies in whether remotely sensed SM
can adequately capture irrigation signals. Recent studies have concluded that the Soil Moisture Active
Passive (SMAP) satellite, Sentinel‐1 satellites, and the Advanced Scatterometer can reliably detect irrigation
signal, and the Soil Moisture Ocean Salinity mission, Advanced Microwave Scanning Radiometer for the
Earth Observing System, the Advanced Microwave Scanning Radiometer 2, and the European Space
Agency Climate Change Initiative soil moisture product can detect irrigation signal but with lower skill
(Bousbih et al., 2018; Escorihuela & Quintana‐Seguí, 2016; Gao et al., 2018; Jalilvand et al., 2019; Kumar
et al., 2015; Lawston et al., 2017; Zhang et al., 2018). Recently, Brocca et al. (2018) input remotely sensed
SM into an inverted soil water balance equation to calculate monthly irrigation amounts during nonrainy
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satellite overpasses. Jalilvand et al. (2019) built on Brocca et al. (2018) by removing bias from estimated irri-
gation by estimating model bias over nonirrigated or rain‐fed cropland areas and used these biases for cor-
recting the simulation at irrigated pixels. Zaussinger et al. (2018) quantified seasonal irrigation by attributing
biases between remotely sensed soil wetting and modeled soil wetting to irrigation. Although remotely
sensed SM captures irrigation signals, these retrievals alone are insufficient to assess spatiotemporally con-
tinuous estimates of irrigation and its effects on the water and energy cycles. Studies like Lievens et al. (2017)
that assimilate observations from both SMAP and Sentinel‐1 leverage the strengths of each and have the
potential to ameliorate issues from prior studies that relied exclusively on SMAP retrievals to estimate irriga-
tion magnitude given that the coarse spatial resolution failed to resolve local irrigation practices (Brocca
et al., 2018; Zaussinger et al., 2018). Sentinel‐1 SM observations (10 m resolution) may be more appropriate
than SMAP observations (3–36 km) to resolve local irrigation practices in many regions worldwide where
the footprint of irrigation application is smaller than the SMAP resolution. However, a key limitation of
Sentinel‐1 retrievals are their less frequent overpass intervals (6 days) (Bousbih et al., 2018; Gao et al., 2018).

The goal of DA is to leverage the strengths of spatiotemporally continuous model simulations, for example,
constrained water and energy balances, with the veracity of observations, using observations to “correct” key
model states such as SM (Lievens et al., 2015; Reichle et al., 2008). Correction of model states with DA has
been used to provide more accurate estimates of model outputs such as SM, streamflow, and snow water
equivalent (Dong et al., 2015; Lievens et al., 2015; Margulis et al., 2015; Smyth et al., 2019) and correct model
inputs, such as precipitation (Crow et al., 2011; Crow& Bolten, 2007; Crow&Ryu, 2009; Zhan et al., 2015). A
key assumption in most DA techniques is that the errors in observations and model forecasts are strictly ran-
dom and that on average, the observations andmodel estimates agree with true Earth states. In reality, biases
are unavoidable, and it is difficult to attribute the bias to the model or observations (Kumar et al., 2012).
Often these biases are treated prior to assimilation through cumulative distribution function (CDF) match-
ing to essentially rescale observations to the modeled climatology.

However, a critical problem arises in CDF‐matching observations to amodel climatology, in particular when
the model physics do not account for processes such as irrigation. The goal of CDF‐matching is to map the
observed climatology to the land model, which intends to erase biases between the land model and observa-
tions due to instrument and retrieval errors. Yet, when the LSM does not account for irrigation, the CDF
rescaling also removes the impact of unmodeled processes, such that observed irrigation signal also gets
erased (Kumar et al., 2015). Thus, removing biases between observations and the model is important in
DA, and treatment of biases arising from unmodeled processes (i.e., irrigation) represents an unresolved
challenge. Ongoing research exploring DA over irrigated regions to resolve or circumvent this issue includes
calibrating LSMs in NASA's Land Information System to in situ SM observations, CDF‐matching observa-
tions to the climatology of an LSM using an irrigation scheme, and assimilating multiple remotely sensed
variables that contain irrigation signal, for example, evapotranspiration or evaporative stress index.
Because bias correction over irrigated land remains an unresolved issue, this study follows Dee (2005) and
uses a bias‐blind DA approach without any a priori bias correction. Biases are documented, and their impact
is evaluated across the conterminous U.S. (CONUS). The inferences from this study are expected to contri-
bute toward the development of bias correction strategies that preserves signal of unmodeled processes.

Here, we present a methodology that uses SMDA to estimate irrigationmagnitude and improve understand-
ing of irrigation's effects on surface SM. We apply and evaluate the methodology using a suite of synthetic
DA experiments (Kumar et al., 2012; Kumar et al., 2015; Reichle et al., 2008) that use SM outputs from a con-
trol simulation as a surrogate for remotely sensed SM retrievals. While we do not directly assimilate remotely
sensed SM, we impose categorical errors in the experiments using the characteristics of SM from NASA's
SMAP satellite as a way to systematically evaluate both the performance and limitations of the method in
an applied context. Evaluations are presented in the context of SMAP retrievals because these have been
shown to yield the most accurate SM estimates relative to other sensors (Chen et al., 2018; Kumar et al.,
2018; Lievens et al., 2017), although the method can be applied to any SM product or land model. This study
follows an approach similar to Crow et al. (2011), except that unlike Crow et al. (2011) who were interested
in improving estimates of precipitation, here we seek to quantify water input from irrigation. This manu-
script is organized around a suite of synthetic experiments, presented to systematically evaluate the impacts
of known, SMAP‐based error sources on the DA system. We seek to evaluate the impact of the following sys-
tem characteristics on the performance of estimated irrigation: (i) the window length of the DA smoothing
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algorithm, (ii) the frequency of satellite overpasses, (iii) noise in the SM data, (iv) relative magnitude of irri-
gation compared to precipitation, (v) biases between the LSM and the satellites, and (vi) the challenge of
unknown irrigation timing.

2. Materials and Methods
2.1. Approach

We use the particle batch smoother (PBS) DA method (Dong et al., 2015; Margulis et al., 2015; Vrugt et al.,
2013) to estimate the unmodeled irrigation process on the basis of minimizing errors between simulated and
observed SM states. Particle‐type DA algorithms have been used to successfully increase accuracy of moist-
ure states and fluxes in small‐scale problems assimilating in situ SM observations (Dong et al., 2015) and in
large‐scale problems assimilating remotely sensed SM observations (Crow et al., 2011; Crow & Ryu, 2009).
An important distinction of the PBS is that it tracks the accuracy of individual model simulations, for exam-
ple, particles, and gives more weight to accurate particles. In contrast, the other common assimilation
method—the Ensemble Kalman Smoother (EnKS)—adjusts, for example, nudges, the state of the model clo-
ser to the observed state estimate. We elect to use the PBS over the EnKS because estimating model inputs,
that is, precipitation and irrigation, from the EnKS requires parameters external to the land model that are
difficult to calibrate (Crow et al., 2011; Crow & Ryu, 2009). Conversely, particle accuracy, or weights from
the PBS, can be directly translated into respective particle forcings to determine the best estimate of water
input (the sum of irrigation and precipitation), from which known precipitation can be subtracted to esti-
mate irrigation. The implicit assumption is that accurate SM states are the product of accurate model forcing.
Application of a known amount of irrigation in these experiments allows us to comprehensively validate the
method under key sources of error introduced sequentially (i.e., one at a time) and in combination. We elect
to specify irrigation amount, rather than use observations or census data, so as to avoid confounding the ana-
lysis with sparse and biased data (Brocca et al., 2018; Kumar et al., 2015). Because the objective of this manu-
script is to critically evaluate a new approach, we elect to specify a “truth” irrigation signal which allows for
the systematic diagnosis of the known error sources as well as overcome data limitations (Brocca et al., 2018),
both of which are needed for a comprehensive validation. Hence, all DA experiments in this study use syn-
thetic observations derived from LSM simulations rather than remotely sensed retrievals.

Core experimentation is conducted on a single grid cell in a heavily irrigated region of Nebraska, with an
extended analysis performed on other irrigated regions across CONUS to evaluate the role of climate on
method performance. Synthetic experiments assume perfect knowledge of when and where irrigation is pre-
sent. Although irrigation maps accurately predict the location of irrigation (Ambika et al., 2016; Bousbih
et al., 2018; Gao et al., 2018; Ozdogan & Gutman, 2008; Teluguntla et al., 2017), their temporal resolution
is not fine enough to determine temporal boundaries of the irrigated season. In this study, we assume the
irrigation season follows Yonts (2002) and acknowledge that nonsynthetic applications of this method will
require identification of the irrigation season at the model's spatial.

The suite of synthetic DA experiments uses an identical twin experiment set up (Kumar et al., 2015), pre-
sented in Figure 1. All simulations are run over a single model grid cell in Nebraska. A 2‐year spin‐up gen-
erated initial conditions for the DA experiments. The 2015 irrigation season (29 April to 6 August) (Yonts,
2002) is evaluated. The variable infiltration capacity (VIC) LSM simulation forced with the NLDAS‐2 data
is termed the open loop (OL) integration (Table 1). The VIC LSM simulation forced with NLDAS‐2 data
and a prescribed quantity of irrigation is used as the “truth” simulation (Table 1). From the truth simulation,
observations are generated. These synthetic observations are assimilated with an ensemble of particles
forced with NLDAS‐2 data across a range of irrigation magnitudes. Each particle receives weights from
the PBS over defined fixed window intervals. Weights are traced to particle forcings to describe a posterior
probability density function (PDF) of precipitation plus irrigation, while also managing the population of
particles. The population is managed by resampling from a set of preferential, that is, high‐weighted, particle
states at the beginning of each new window using the sequential importance resampling methodology
(Gordon et al., 1993; Weerts & El Serafy, 2006), and particles with lower weights are generally discontinued
(Figure 2a). The expected value of the posterior PDF yields the single best estimate of precipitation plus irri-
gation for each smoothing window. NLDAS‐2 precipitation is subtracted from this best estimate of precipita-
tion plus irrigation to yield the single best estimate of irrigation for each smoothing window. Here, the
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standard deviation of irrigation's posterior PDF is used to represent the uncertainty of the estimated
irrigation (Figure 2b).

Key variables are defined in section 2.1.1, and the basic implementation of the PBS is described in section
2.1.2. The experimentation on methodological error sources follows for window length (section 2.2.1),
frequency of observations (section 2.2.2), observational noise (section 2.2.3), irrigation magnitude (section
2.2.4), model bias (section 2.2.5), irrigation application timing (section 2.2.6), and a comprehensive

Figure 1. Structure of synthetic data assimilation experiment.

Table 1
Definitions of Key Variables and Terms Used in Synthetic Data Assimilation Experiments

Variable/Term Definition

PObs Gridded historical precipitation
IRRGtruth Synthetic irrigation following published weekly water use patterns in Western Nebraska (Yonts, 2002)
Atruth Aggregate of observed precipitation and truth irrigation, Atruth = POBS + IRRGtruth. Used as forcing in the

“Truth Simulation”
Open loop simulation Simulation designed to portray nonirrigated land
Truth simulation Simulation designed to portray irrigated land
SMOL Surface SM outputs from open loop simulation
SMtruth 6 a.m. surface SM outputs from truth simulation. Used as synthetic observations in DA experiments
SMtruth + Overpass 6 a.m. surface SM outputs of truth simulation on days of valid SMAP overpasses. Used as synthetic observations

in DA experiments
Particles Simulations forced with PObs + precipitation perturbations. Precipitation perturbations account for noise in PObs and

unknown irrigation quantities
Pparticle Precipitation used to force particles in PBS simulations
APBS Best estimate precipitation + irrigation from particle batch smoother algorithm
IRRGPBS Best estimate irrigation from particle batch smoother algorithm. (APBS–PObs)
σIRRG − PBS Standard deviation of the discrete posterior PDF of the irrigation ensemble, used here as a measure of IRRGPBS uncertainty

Note. Additional details can be found in section 3 describing data sources.
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evaluation combining frequency of observations, observational noise, and irrigation application timing
(section 2.2.7), with the metrics for performance evaluation presented in section 2.3.
2.1.1. Definitions
Key variables used in the synthetic DA experiments are referenced in Table 1. IRRGtruth is created from a
spline interpolation of weekly corn water use (Yonts, 2002). The aggregate of both sources of water, Atruth

= POBS + IRRGtruth, is used to force the synthetic truth LSM simulation. Irrigation is added to the LSM as
supplemental precipitation forcing. For consistency with the SMAP 6 a.m. overpass timing (Entekhabi
et al., 2014; Jackson et al., 2012), LSM outputs at 6 a.m. local time are used as the truth synthetic observa-
tions, SMtruth, in the PBS algorithm.
2.1.2. Precipitation Perturbations and the Particle Batch Smoother
Here we describe how the PBS algorithm is implemented. We refer the reader to Dong et al. (2015) for a com-
prehensive and general presentation of the PBS.

Precipitation is perturbed over all time steps to generate the suite of 99 particles by introducing multiplica-
tive Gaussian noise with a 10% standard deviation, N(0, 0.1), accounting for random noise in precipitation
observations. Here, ε is a Monte Carlo sample from this distribution. A second perturbation, IRRG(r), is
superimposed during the irrigated season. Precipitation perturbations (ηi) and precipitation forcing applied
to particle simulations (Piparticle) are described by equations (1a) and (1b), respectively.

ηi ¼ Pobs* εi þ IRRGi rð Þ (1a)

Pi
particle ¼ Pobs þ ηi (1b)

where ηi is the perturbation added to Pobs, and IRRGi(r) is a random sample from a uniform distribution
range, r, of irrigation magnitudes, and i denotes the ith particle in the ensemble, hence Pparticle is a 99x1 vec-
tor at each time step. The range of superimposed irrigation perturbations, r, is 0–30 mm day−1 during the
irrigation season and r= 0 elsewhere. A uniform distribution is used because we assume no prior knowledge
of irrigation magnitude, thus the entire possible range of irrigation is considered equally. IRRGi(r) is applied
continuously each day to the ith particle during the irrigation season, matching the same timing of IRRGtruth.
We apply irrigation continuously each day given that 80% of irrigated lands in Nebraska rely on sprinkler
systems (Johnson et al., 2011) that are commonly in use 22 hr per day (Ross, 1997). Multiple irrigated fields
are observed by each 9 km SMAP sensing pixel, so we assume irrigation is applied continuously in each
coarse pixel during a growing season.

Figure 2. (a) Time series for subsection of the irrigation season of 99 particles colored by weight assigned based on proxi-
mity to the SMtruth shown as red circles, with the weighted particle average plotted as a solid black line and OL SM
without irrigation plotted as a dotted black line. (b) The corresponding time series of IRRGPBS (black line), σIRRG − PBS
(gray shading), and IRRGtruth (red line).
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An ensemble of model states evolves in parallel using the forward model:

xit ¼ f xit−1;u
i
t; b

i� �þ wi
t (2)

where xit is the model state (SM) of the ith particle at time t, uit are the perturbed forcing data, b
i is a vector of

time invariant model parameters, wi
t is the model error, and f is the forward model (VIC). Here, xit is a 99x1

vector because SM is the only assimilated state.

Posterior expected values for precipitation plus irrigation, APBS, are calculated as the mean precipitation for-
cing of the discrete posterior density given from the PBS. The posterior density is fully described by the con-
ditional PDF given by Bayes' theorem (Margulis et al., 2015):

p yt−Lþ1:t j xit−Lþ1:t

� � ¼ ∏t
j¼t−Lþ1

1

2πð Þn=2det CVð Þ1=2
e −0:5 yj−x

i
jð ÞTC−1

V yj−x
i
jð Þ

� �
(3)

or the likelihood of observed states, y, given particle estimates, x, in window t − L + 1:t, where L repre-
sents the length of the window. In a special case where L = 1, observations are assimilated sequentially,
that is, the particle filter. In cases where L > 1, the PBS assimilates observations within a window in a
single batch. The likelihood function is specified as a Gaussian PDF that is a function of observation error
covariance (CV), residuals between simulated SM and all observations within a window, and the number
of assimilated states or fluxes (n). In this case, n = 1 because only SM is assimilated. Particles that pro-
duce SM states with small residuals relative to observed states receive higher likelihood estimates com-
pared to particles that produce SM states with larger residuals. CV plays a large roll in controlling the
spread of weights in that a smaller CV results in fewer particles with high weights. Synthetic experiments
that use SMtruth as observations assume CV to be unknown, and the model's ensemble variance at the
time of assimilation is used as a proxy for CV. A weakness of this assumption is that observation uncer-
tainty becomes a function of window length, since the ensemble spread increases for longer window
lengths. Experiments that use these perfect observations provide an exposition of the method, but in
our core experimentation we use more realistic values of prescribed observational error, where this pre-
scribed error is used for CV. We advise the reader to use prescribed product errors for CV in the likelihood
calculation for any application of this method.

Weights for each particle are equated to likelihood estimates. Weights defining the discrete posterior PDF
are normalized between 0 and 1 of likelihood estimates:

wi
t ¼

p yt−Lþ1:t j xit−Lþ1:t

� �

∑N
i¼1p yt−Lþ1:t j xit−Lþ1:t

� � (4)

where wi
t is the normalized weight assigned to the entire window and is a 99x1 vector at each time

step, which is repeated at each time step in a fixed window; that is, weights are constant within a fixed
window.

We use sequential importance resampling (Gordon et al., 1993; Weerts & El Serafy, 2006) to avoid degener-
acy (collapse) of the posterior weights after several updates (Margulis et al., 2015). The resampling process is
analogous to rolling an N‐sided loaded die, where N is the number of particles generated; here N = 99. The
probability of rolling each side of the die is defined by weights calculated in equation (4). The die is rolled N
times. Each time the die lands on a particle's side, a new particle is generated from the particle's state at the
end of the previous fixed window and propagated to the start of the current fixed window. Hence, particles
with higher weights have higher probabilities of propagating their states to be initial conditions in the
subsequent window.

APBS, the expected time series of precipitation plus irrigation, is calculated as

APBS;t ¼ ∑N
i¼1w

i
t P

i
particle;t (5)

where Piparticle,t is the precipitation forcing particle i at time t. The estimated irrigation from PBS simulations,
IRRGPBS, is calculated by subtracting PObs from APBS.
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We quantify the uncertainty of IRRGPBS, as the standard deviation of the discrete posterior PDF of the irriga-
tion ensemble (Montgomery & Runger, 2013):

σIRRG−PBS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1w
i
t IRRGi rð Þ−IRRGPBS
� �2q

(6)

2.2. Sensitivity Experiments of the DA System

The performance of the DA system is evaluated against the error sources described below and presented in
Table 2. DA performance has been shown to be sensitive to initial conditions in experiments assessing dif-
ferent observational frequency and window length (Dong et al., 2015). For this reason, the first two experi-
ments were run at least 10 times with different initial conditions, for example, different starting dates, as a
way to comprehensively evaluate model performance. Initial conditions were taken from a 2‐year spin‐up
simulation that used identical inputs as the truth simulation excluding irrigation forcing. Experiments that
include random observation noise (sections 2.2.3 and 4.3; sections 2.2.4 and 4.4; and sections 2.2.7 and 4.7)
were run 20 times applying a unique time series of random noise to account for multiple realizations of ran-
dom noise, since these results were shown to be particularly sensitive to different instances of random noise.
2.2.1. Window Length
Window length is a potentially limiting factor for the performance of the presented method given that
weights are constant from eachwindow. This has the effect of producing constant irrigation estimates during
each window, assuming no random noise from precipitation, that is, ε in equation (1a) is 0. However, in the
presented synthetic DA experiments, we assume random noise in precipitation observations exist, so discre-
pancies between Pparticle and PObs exist due to both random perturbations and irrigation perturbations (equa-
tion (1a)) causing irrigation estimates in each fixed window to not be constant (Figure 2b). A trade‐off exists
in using shorter versus longer window lengths, since irrigation estimates using shorter window lengths can
capture finer temporal variations in truth irrigation although noisy observations can be potentially impact-
ful. Longer window lengths miss high‐frequency fluctuations, but since they include more observations,
they produce more stable irrigation estimates that are less sensitive to noisy observations than shorter win-
dows. Here, synthetic DA experiments are conducted where daily SMtruth is assimilated with particles using
window lengths of 1–30 days. We assess the median statistics, or measure of the central tendency, of each
window. The particle filter is considered a special case of the PBS when the window length is 1 day.
Understanding that trade‐offs between shorter and longer window lengths are present, we evaluate the
method's sensitivity in the context of three example windows, 10, 16, and 24 days, in latter experiments.
2.2.2. Frequency of Observations
Remotely sensed surface SM retrievals generally occur at infrequent and irregular intervals based on their
orbit. We evaluate the performance of the method across a range of observational overpass intervals com-
mensurate with those from operational satellites. Here, nine synthetic DA experiments are conducted where
the synthetic observations, that is, SMtruth, are assigned regular return intervals of 1 to 9 days, respectively. A
10th experiment is conducted that applies SMAP's irregular return interval to SMtruth. Synthetic observations
with SMAP's return interval are referred to as SMtruth + Overpass.
2.2.3. Observation Noise
Remotely sensed retrievals are inherently noisy, and assimilating less noisy observations is expected to result
inmore accurate estimates fromDA simulations (Reichle et al., 2008). To this end, synthetic observations are
generated by adding random 0‐mean Gaussian noise with standard errors of 0.01, 0.02, 0.03, 0.04, and 0.05
cm3 cm−3 to SMtruth + Overpass. Random Gaussian noise settings of 0.01–0.02 m3 m−3 are optimistic, whereas
reported unbiased root mean square error for state‐of‐the‐art remotely sensed measurements generally fall
between 0.03 and 0.05 cm3 cm−3 (Colliander et al., 2017; Entekhabi et al., 2010; Kerr et al., 2010).
2.2.4. Irrigation Magnitude
We acknowledge that irrigation water use is regionally variable depending on the amount of precipitation
received and crop‐water used. We seek to evaluate performance across a range of plausible irrigation rates
relative to their background precipitation, which are representative of different regions within CONUS.
We analyze the method in context of seasonal precipitation magnitude over irrigated sites in Nebraska,
Florida, Mississippi, California's Central Valley, and Oregon. The baseline method was evaluated in
Nebraska, which has been a focus of other irrigation studies (Johnson et al., 2011; Scanlon et al., 2012;
Ozdogan et al., 2010; Zaussinger et al., 2018; Jiang et al., 2014; Pun et al., 2017). These new experiments
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superimpose IRRGtruth to a range of background precipitation forcings. All truth simulations receive the
same aggregated water input, for example, precipitation plus irrigation (1,380 mm per season), assuming
a roughly fixed magnitude of plant water use over a single season, noting that evaporative demand in
different climates will effectively increase or decrease the plant available water. A semicontinuous range
of irrigation over precipitation ratios is created, ranging from 0.25 to 26.25, by rescaling precipitation and
irrigation, IRRGtruth/PObs, from the PObs and IRRGtruth used in prior experiments with scalar multipliers.
Irrigation over precipitation ratios are tested with evenly spaced intervals of 2. Experiments assimilate
SMtruth + Overpass imposed with typical noise for the SMAP satellite, 0.03 cm3 cm−3.
2.2.5. Model‐Observation Bias
The above experiments have assumed that models and observations are unbiased estimators of true SM
states, specifically that the only bias present between modeled SM and observed SM is the irrigation signal.
However, systematic biases between modeled SM and observed SM are widely known to exist because simu-
lated SM is dependent upon numerous model‐specific assumptions related to soil texture, physics parame-
terizations, and vertical discretization (Dirmeyer et al., 2006; Koster et al., 2009). For this reason, bias
correction is a common practice in DA systems, including SM DA over irrigated (Kumar et al., 2015; Nair
& Indu, 2019) and nonirrigated (De Lannoy et al., 2007; Kumar et al., 2012; Reichle et al., 2004) regions.
Although remotely sensed SM offers promise to improve unmodeled irrigation estimates, developing a bias
correction technique that does not erase unmodeled signals such as those from irrigation, for example, in
adjusting observations to the LSM climatology, remains an unresolved issue in using DA to quantify irriga-
tion water use (Kumar et al., 2015; Nair & Indu, 2019; Zhang et al., 2018). Therefore, we evaluate the

Table 2
Experiment Descriptions With Corresponding Methods and Results Sections

Experiment name
Relevant methods and

results sections Experiment description

Window length 2.2.1 and 4.1 Evaluate the impact of 1‐ to 30‐day windows on irrigation performance. Assimilate daily SMtruth with zero
noise or bias. Force particle and truth simulations with irrigation applied on a continuous schedule.

Frequency of
observations

2.2.2 and 4.2 Evaluate the impact of hypothetical satellite overpass intervals of 1 to 9 days using a short, medium, and long
window length, 10, 16, and 24 days, respectively. Assimilate SMtruth with zero noise or bias. Force particle
and truth simulations with irrigation applied on a continuous schedule.

Observation noise 2.2.3 and 4.3 Evaluate irrigation performance when synthetic observations are imposed with 0‐mean Gaussian noise with
standard errors of 0.01, 0.02, 0.03, 0.04, and 0.05 cm3 cm−3 using a short, medium, and long window length,
10, 16, and 24 days, respectively. Assimilate SMtruth + Overpass with zero bias. Force particle and truth
simulations with irrigation applied on a continuous schedule.

Irrigation
magnitude

2.2.4 and 4.4 Evaluate irrigation performance across a range of irrigation/precipitation ratios using a short, medium, and
long window length, 10, 16, and 24 days, respectively. Force truth simulations with varying combinations of
PObs and IRRGtruth, rescaling PObs and IRRGtruth via scalar multipliers to maintain the same magnitude of
PObs + IRRGtruth for all experiments while varying the ratio of IRRGtruth/PObs. Conduct experiments for
each truth simulation. Assimilate SMtruth + Overpass imposed with 0‐mean Gaussian noise with a standard
error of 0.03 cm3 cm−3 and zero bias. Force particle and truth simulations with irrigation applied on a
continuous schedule.

Model‐observation
bias

2.2.5 and 4.5 Evaluate the impact of systematic bias between themodel particles and truth simulation using amediumwindow
length, 16 days. Assimilate SMtruth + Overpass imposedwith static systematic biases (−0.2 to 0.2 cm3 cm−3) and
zero random noise. Force particle and truth simulations with irrigation applied on a continuous schedule.

Irrigation
application
timing

2.2.6 and 4.6 Evaluate the impact of unknown irrigation timing and discontinuous irrigation schedules on irrigation
performance using a long, 24 days, window length. Five experiments are conducted with different
combinations of truth irrigation timing and particle irrigation timing. Force the first truth simulation with
irrigation applied continuously (as done previously). Force the second truth simulation with irrigation
applied every day from 4 a.m.–10 a.m. Force the third truth simulation with irrigation applied all day, 2 days
per week. In the first three experiments, the particle simulations are forced with irrigation applied on a
continuous schedule, which assumes no a priori knowledge of irrigation timing. Force the fourth truth
simulation with irrigation applied all day, 2 days per week. Force the fifth truth simulation with irrigation
applied every day from 4 a.m.–10 a.m. In the fourth and fifth experiments, particle simulations are forced
with irrigation applied on the same schedule as truth irrigation to investigate the impact of a priori
knowledge of irrigation timing. Daily SMtruth is assimilated with zero noise or bias for all five experiments.

Comprehensive
evaluation

2.2.7 and 4.6 Evaluate the impact of unknown irrigation timing, discontinuous irrigation schedules, irregular overpass
intervals, and observational noise on irrigation performance. Conduct five irrigation timing experiments
explained in section 2.2.6 when synthetic observations are imposed with 0‐mean Gaussian noise with a
standard error of 0.04 cm3 cm−3. Assimilate SMtruth + Overpass with zero bias.
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proposed method in the context of systematic biases caused by errors in modeled or observed SM, since stu-
dies like Kumar et al. (2015) suggest that this source of bias is important. While we study the role of bias on
methodological performance, we do not attempt to develop a new bias correction scheme here, given the
lack of consensus in bias correcting modeled and unmodeled processes.

In these experiments, a range of static systematic biases (−0.2 to 0.2 cm3 cm−3) are applied to SMtruth +

Overpass at each time step prior to assimilation. Forty DA simulations are run, uniformly sampling the range
of biases. The range of imposed biases is based on actual biases present between NLDAS‐2 LSMs and the
SMAP satellite, calculated over the entire NLDAS domain (25°–53°N, 125°–67°W), excluding the top 8%
most intensively irrigated regions defined in the MIRCA2000 data set (Portmann et al., 2010) and points
in space‐time where SMAP was flagged for poor quality. Comparisons were made exclusively over nonirri-
gated or lightly irrigated regions so as to address systematic biases between LSMs and SMAP that are due to
factors other than unmodeled irrigation.
2.2.6. Irrigation Application Timing
While the continuous irrigation schedule applied is fairly common in the United States (Johnson et al., 2011;
Ross, 1997), this scheduling is rarely applied in Europe and elsewhere. For example, in Europe a 2 days per
week irrigation schedule is expected to be commonplace. We seek to evaluate DA performance when
IRRGtruth is not applied on the previously assumed continuous schedule in scenarios where irrigation timing
is both known and unknown. Unknown irrigation timing is represented by differences in timing between
IRRGtruth and DA particles. We present results from the 24‐day window experiment in section 2.2.1 where
a continuous, that is, all day every day, irrigation schedule is applied to both the truth simulation and the
particles. We then conduct two experiments with new truth irrigation schedules, and these schedules are
assumed to be unknown. In these experiments, particle irrigation is applied all day every day, and
IRRGtruth is applied (i) every day only during the hours of 4 a.m.–10 a.m. (Warren & Bilderback, 2002;
Park & Smith, 2008) and (ii) all day, 2 days per week (Hassanli et al., 2009; Seginer, 1967). Both of these
experiments preserve the weekly and seasonal magnitude of irrigation relative to the original IRRGtruth.
Two synthetic DA experiments are conducted where SMtruth produced from respective truth simulations
are assimilated with the ensemble of particles. To evaluate performance when irrigation schedule is known,
two similar experiments are conducted where IRRGtruth is applied (i) every day only during the hours of 4 a.
m.–10 a.m. and (ii) all day, 2 days per week, identical to the former two experiments, with the exception that
in these experiments particles receive irrigation on the same schedule as IRRGtruth, for example, assuming
irrigation timing is known.
2.2.7. Comprehensive Evaluation
The above experiments have introduced sources of errors on the DA system one at a time. Here we consider a
combination of error sources to carry out a synthetic real‐world experiment. We run irrigation timing experi-
ments as described in section 2.2.6, except now assimilating synthetic observations generated by adding ran-
dom 0‐mean Gaussian noise with a standard error of 0.04 cm3 cm−3 to SMtruth + Overpass. This experiment
explores uncertainties of irrigation timing as discussed in section 2.2.6 in a real‐world context based on
the use of realistic synthetic observations.

2.3. Comparison Metrics

We compute commonly used statistical performance measures between the DA system, for example, daily
IRRGPBS, against the synthetic truth, for example, daily IRRGtruth exclusively during the irrigation season.
Thesemeasures include percent bias (PBIAS) to help identify average biases (overprediction vs. underpredic-
tion) for irrigation estimates over an entire season, and Pearson's correlation coefficient (R) to quantify tim-
ing errors, or the degree of collinearity between estimated and truth irrigation (Moriasi et al., 2015).

3. Data Sources
3.1. Land Surface Model

The VIC (version 4.2.1.d; Liang et al., 1994) model is chosen for this study given its comparable complexity to
other state‐of‐the‐art LSMs, its use in NLDAS‐2 (Xia et al., 2012a; Xia et al., 2018), and the Land Information
System (Kumar et al., 2006; Peters‐Lidard et al., 2007). VIC is run in water and energy balance mode at an
hourly time step, forced with precipitation, relative humidity, wind speed, partial vegetation cover fraction,
atmospheric pressure, air temperature, incoming shortwave, and longwave radiation. All model integrations
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use the standard 10 cm depth for the uppermost soil layer. In real‐world
applications, the depth of the upper layer should be adjusted to accommo-
date the sensing depth of SMAP SM (<5 cm).

3.2. Land Surface Model Inputs

NLDAS‐2 hourly meteorological and monthly vegetation greenness frac-
tion data (Xia et al., 2012b) are used to force all simulations over a single
grid cell in the study watershed. Relative humidity, shortwave radiation,
longwave radiation, and pressure are interpolated bilinearly, while preci-
pitation and wind are interpolated bicubically to the location of the study
grid cell, given the shorter lengths of variability associated with precipita-
tion and wind (Livneh & Hoerling, 2016). Interpolated precipitation is
referred to as PObs in Table 1. Monthly NLDAS‐2 vegetation greenness
fraction is uniformly disaggregated to hourly data and spatially interpo-
lated using the nearest neighbor approach. Soil parameters were obtained
from the Livneh data set (Livneh et al., 2015). For core experimentation,
irrigation (819 mm per season) follows corn water use patterns in
Western Nebraska (Yonts, 2002), that is, IRRGtruth (Table 1). For experi-
ments exploring sensitivity to irrigation magnitude relative to precipita-
tion, section 2.2.4, irrigation forcings follow the same pattern as that
described in Yonts (2002), but scaled to seasonal magnitudes discussed in
section 2.2.4.

3.3. SMAP

Although SMAP data are not directly used in this study, the experimental
set up is guided by key SMAP attributes, for example, overpass time, fre-
quency, and shallow sensing depth. SMAP provides morning and evening
(6 a.m. and 6 p.m. local time) estimates of surface SM, globally every 1–3
days (Entekhabi et al., 2014), has a sensing depth of approximately 0–50
mm, and meets the mission goal of 0.04 mm3 mm−3 unbiased root mean
square error (Chan et al., 2018; Colliander et al., 2017). Here, we consider
only the 6 a.m. overpasses because the SMAP algorithm assigns a single
temperature to both the soil and its overlying canopy, a condition that is
best met in the morning hours (Entekhabi et al., 2014; Jackson et al.,
2012).We exclude SMAPdata that have been flagged for uncertain quality.

4. Results

Figure 2 illustrates the performance of the key elements of the DA system, the translation of assimilation
weights from surface SM into the single best estimate irrigation over a growing season. The color of the 99
lines in Figure 2a shows the weights assigned to each particle in the PBS algorithm, assigned based on their
proximity to synthetic observations, shown in red dots, in each fixed window. The vertical gray dashed lines
denote 16‐day fixed window bounds. A weighted average of the particles is considered the best estimate SM
time series (black line in Figure 2a). This best estimate closely matches SMtruth and therefore accurately
reflects the effects of truth irrigation on modeled SM, unlike OL SM that lacks knowledge of irrigation
(dashed back line). For clarity, Figure 2a only shows a portion of the irrigation season, but the same
approach is applied to the entire time period shown in Figure 2b.

The translation of particle weights from SMDA into precipitation and irrigation weights is shown in Figure 2
b, producing an estimated irrigation time series, IRRGPBS (black line with gray band of uncertainty in
Figure 2b). The results from this baseline experiment, prior to introducing errors into the daily synthetic
observations, yield PBIAS and R values of 0.66% and 0.95, respectively. The purpose of this study is to assess
how well the PBS (IRRGPBS) can be used to estimate IRRGtruth (Figure 2b, red line) when considering the
variety of errors that are likely to be present when assimilating remotely sensed SM.

Figure 3. Performance of estimated irrigation produced from data assimila-
tion experiments assimilating SMtruth using window lengths of 1–30 days.
Dots represent median summary statistics for each window length from a
suite of 10 synthetic data assimilation experiments initialized from staggered
start dates. (a) Absolute PBIAS comparing IRRGPBS with IRRGtruth. (b) R
comparing IRRGPBS with IRRGtruth. (c) Uncertainty of IRRGPBS
(σIRRG − PBS).
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4.1. Window Length

The performance of irrigation estimates improves with increasing window
length for all skill metrics until it plateaus at a window length longer than
approximately 10 days, beyond which (10‐ to 30‐day window lengths)
PBIAS is less than 2%, R is greater than 0.9, and the uncertainty,
σIRRG − PBS, is less than 0.2 mm day−1 (see Figure 3). When window
lengths are short (<10 days), errors between particle SM and observed
SM tend be dominated by the initial states of the fixed window rather than
particle forcing. Longer window lengths shrink the effect of particles'
initial condition on PBS assigned weights and allows for weights to be dri-
ven by the accuracy of model inputs (e.g., irrigation). The particle filter is
considered a special case of the PBS when the window length is 1 day.
Hence, a PBS is more effective for estimating irrigation than a particle fil-
ter. In a multiobjective optimization context, the 16‐ and 24‐day windows
can be considered roughly equal performing, or nondominated relative to
each other, and the 10‐day window is dominated, or outperformed, by
both the 16‐ and 24‐day windows.

σIRRG − PBS is related to the spread of weights assigned in the particle
smoothing algorithm. A small σIRRG − PBS indicates that there is a narrow
grouping of particles receiving high weights with the extreme case being
that only one particle receives weight. This extreme case is approached
either as observational uncertainty, Cv, from equation (3), decreases or
as the ensemble variance increases. Longer windows allow for the spread
of the ensemble to expand, thus explaining the narrowing σIRRG − PBSwith
window length. Here, decreasing σIRRG − PBS also corresponds with degen-
eracy in the PBS algorithm. For cases of the 10‐, 16‐, and 24‐day windows,
the mean number of particles resampled during the irrigation season in
the sequential importance resampling process are approximately 22, 18,
and 15, respectively. This supports that degeneracy is more pronounced
with an increasing window length.

4.2. Frequency of Observations

More frequent observations yield more accurate estimates of irrigation,
with longer window lengths more robust to the variability of infrequent
observations as shown in Figure 4. Longer windows tend to bemore stable
because more observations are assimilated within each fixed window rela-
tive to shorter window lengths. A key threshold is seen in the 10‐day win-
dow case (blue dots), for return intervals of 5 days or greater since two or
fewer observations can be accounted for in each fixed window. When too

few observations are assimilated in a fixed window, the irrigation signal can be overwhelmed by noise in pre-
cipitation forcing, and errors are more likely to be propagated forward from one window to the next by
resampling particles from inaccurate initial conditions. The green highlighted region in Figure 4 represents
the range of return interval of the SMAP satellite (Entekhabi et al., 2014). Here, all tested windows produce a
median absolute PBIAS of less than 3.4%, 16‐ and 24‐day windows yield a median R of at least 0.91, with the
simulations using a 10‐day window yield a median R of at least 0.88. σIRRG − PBS (not shown) is effectively
insensitive to return interval.

We also conducted a similar experiment to Figure 4 where we imposed irregular return intervals such as
those from SMAP, assimilating SMtruth + Overpass as synthetic observations (not shown) yielding a median
PBIAS of less than 1% and median R of greater than 0.90 for simulations using 16‐ and 24‐day windows.
Simulations using a 10‐day window yield slightly degraded performance with a median PBIAS of 2.57%
and median R of 0.87. Results from experiments using irregular overpass intervals are consistent with per-
formance from experiments using regular overpass intervals, indicating that the return intervals from
SMAP are generally not a major limiting factor to overall performance.

Figure 4. Performance of estimated irrigation produced from data assimila-
tion experiments assimilating SMtruth with regular return intervals shown
on the horizontal axis. The green highlighted region represents return
interval range of SMAP. Dots represent median values from 50 synthetic
data assimilation experiments for each return interval scenario. (a) Absolute
PBIAS comparing IRRGPBS with IRRGtruth. (b) R comparing IRRGPBS with
IRRGtruth.
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4.3. Observation Noise

DA experiments with more noisy observations yield both less accurate
and more uncertain estimates of irrigation, with the performance of
longer windows less impacted by noise. Figure 5 shows themedian perfor-
mance and its uncertainty and highlights the range of error standard
deviations (0.021–0.056 cm3 cm−3) expected from SMAP's mission
(Colliander et al., 2017). For experiments imposing noise equivalent to
SMAP's mission goal (0.04 cm3 cm−3), experiments using a 10‐day win-
dow show a median seasonal PBIAS and correlation of 16% and 0.54,
respectively. Experiments using a 16‐day window show a median PBIAS
and R of 10% and 0.74, respectively. Experiments using a 24‐day window
show the best performance with a median PBIAS and R of 1% and 0.76,
respectively. Figure 5c corroborates Figure 3: Uncertainty, σIRRG − PBS,
is generally lower for longer windows. Figure 5c also shows that
σIRRG − PBS increases with observational noise, which is a direct reflection
of the PBS likelihood formulation (equation (3)) that drives particle
weighting. As the error covariance of the synthetic observations increase,
particle weighting becomes more uniform, that is, more particles receive
relatively high weights, in turn the uncertainty (equation (4)) increases.

4.4. Irrigation Magnitude

The DA system shows increasing skill as the ratio of irrigation/precipita-
tion (I/P) increases until the ratio reaches approximately 4, with known
irrigation regions within CONUS shown by vertical colored lines in
Figure 6. Experiments where irrigation is small compared to precipitation
(I/P < 4) produce larger errors becausemultiplicative precipitation pertur-
bations and noise in the synthetic SM observations are large compared to
the irrigation signal. The persistent positive PBIAS is reflective of the
skewness of the 99‐member ensemble toward the uniform particle irriga-
tion estimates, for example, 0–30 mm day−1, which are larger than the
amount of IRRGtruth, for example, roughly 2.6 mm day−1 for smaller I/P
ratios toward the left part of Figure 6. In this case, the maximum underes-
timation for irrigation is approximately 2.6 mm day−1, whereas the maxi-
mum overestimation of irrigation is approximately 27.4 mm day−1.
Therefore, random noise in synthetic SM observations and precipitation
perturbations tends to favor overestimates of irrigation. It is worth noting
that this artifact would be removed if the range of irrigation applied to the
particles were perfectly symmetric about IRRGtruth. Overall, it appears that
the DA system tends to produce positive biases across both drier and wet-
ter climate regimes where irrigation plays larger or smaller roles, and
application of this method over wetter climates where irrigation plays
smaller roles will produce less skilled estimates of irrigation.

4.5. Systematic Bias

Biases between NLDAS‐2 LSMs and SMAP are computed across the
CONUS, Figures 7a and 7b, revealing that systematic LSM‐SMAP biases
are often large enough to potentially dominate DA performance, noting
that we assume the LSM 10 cm depth for the uppermost soil layer is com-

parable to the SMAP sensing depth of <5 cm.When these systematic biases exceed ±0.01 cm3 cm−3, seasonal
PBIAS performance exceeds 20%. Figure 7c shows the resulting PBIAS of the DA system when subjected to
biases imposed to SMtruth + Overpass prior to assimilation. In experiments where model‐observation biases are
positive, relatively dry observations favor particles forced with lower irrigation quantities resulting in under-
estimations of irrigation. In experiments where model‐observation biases are negative, relatively wet

Figure 5. Performance of estimated irrigation produced from DA experi-
ments assimilating SMtruth + Overpass perturbed with 0‐mean Gaussian
noise with a standard error denoted by the horizontal axis. Twenty simula-
tions are run for each observational noise scenario, producing a new time
series of perturbed observations each simulation. Filled circles represent the
median summary statistic from the 20 simulations, and upper and lower
error bars represent the 85th and 15th percentiles. The green highlighted
region represents the reported range of unbiased noise from SMAP at core
validation sites. (a) Absolute PBIAS comparing IRRGPBS with IRRGtruth. (b)
R comparing IRRGPBS with IRRGtruth. (c) Uncertainty of IRRGPBS
(σIRRG − PBS).
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observations favor particles forced with higher irrigation quantities resulting in overestimations of
irrigation. Results indicate <20% seasonal PBIAS can be obtained from only 3.6%, 5.0%, and 13.6% (for
VIC, Noah, and Mosaic, respectively) of locations without bias correction, underscoring the importance of
systematic bias and identifying a suitable correction scheme. Biases between models and observations
present a large obstacle for the usability of the method until advances are made in SM bias correction that
preserve observed irrigation signal or models are successfully calibrated to produce unbiased SM
estimates relative to observations.

4.6. Irrigation Application Timing

Discrepancies between assumed and actual irrigation timing can result in important errors between IRRGPBS

and IRRGtruth. Irrigation timing sensitivities are similar in magnitude and characteristic to model‐
observation bias sensitivities described in the previous section.When IRRGtruth timing produces wetter states
than IRRGPBS timing (for the same magnitude of irrigation), the LSM will have a dry bias relative to SMtruth.
For example, evaporative losses are reduced in a scenario where irrigation is applied only during morning
hours, thus resulting in wetter states than cases where irrigation is applied throughout a day. Also, similar
to Haddeland et al. (2002), a simulation with uniform irrigation application, that is, all day every day, results
in drier states than the same amount of irrigation applied in higher concentrations, that is, 2 days per week.
Figure 8 shows the SM time series for the three truth simulations that apply irrigation on different schedules
(explained in section 2.3.6). Table 3 reports the mean SM over the irrigated season for each truth simulation,
and the resulting summary statistics from five DA experiments described by the timing of IRRGtruth and par-
ticle irrigation. As expected, the experiment that applied IRRGtruth each morning yielded a relatively wet
SMtruth compared to particles that applied irrigation continuously each day, resulting in IRRGPBS with the
largest PBIAS (56%). However, IRRGPBS from this experiment captured the temporal variation of irrigation
well, indicated by a high R (0.91). When assumed irrigation timing matches the timing of IRRGtruth, perfor-
mance on a weekly time step is consistent for the three tested irrigation schedules (see gray rows in Table 3).
These results indicate that irrigation timing is not a limiting factor to the application of this method on a
weekly time scale. However, if irrigation timing is unknown IRRGPBS will exhibit large biases relative to
IRRGtruth, particularly for shorter time scales.

Figure 6. Performance of estimated irrigation across a range of seasonal irrigation versus precipitation ratios. Dark gray
bands represent the 10th and 90th percentiles, and light gray represents the 25th and 75th percentiles of summary
statistics from the 20 synthetic data assimilation experiments for each tested irrigation/precipitation ratio. The black line
represents the median summary statistic from the 20 data assimilation experiments with vertical colored lines reflecting
estimated irrigation over precipitation ratios for five sites (site locations displayed in Figure 7).
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Figure 7. (a) Biases between NLDAS‐2 ensemble (VIC, Noah, and Mosaic) mean surface SM and SMAP surface SM. Irrigated locations excluded from the bias his-
togram in (b) are shown as black boxes. Latitude, longitude, and respective precipitation amounts during the irrigation season for sites discussed in sections 2.2.4
and 4.4 are included. (b) Histograms of mean biases between three NLDAS‐2 LSMs and SMAP over nonirrigated regions. (c) PBIAS comparing IRRGPBS with
IRRGtruth. IRRGPBS is estimated from data assimilation experiments assimilating SMtruth + Overpass perturbed with a temporally static bias (model‐observation
biases shown on the horizontal axis). Vertical colored lines represent the median error‐based bias between respective LSMs and SMAP, derived from the histograms
in (b).

Figure 8. Three SMtruth time series from the same amount of irrigation applied: all day, every day (black), every morning (blue), and all day two times per week
(red). The irrigated season is highlighted in green.
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Since this method estimates the amount of irrigation needed to achieve target SM states for a given set of
inputs, including assumed irrigation timing, these types of experiments could conceivably be used to deter-
mine the efficiency of an irrigation schedule. For example, a suite of alternative irrigation schedules could be
evaluated to identify the most efficient approach to achieve a target SM for a given crop.

4.7. Comprehensive Evaluation

Observational noise and an irregular return interval only slightly reduces the correlation between IRRGPBS

and IRRGtruth as seen when comparing the median from synthetic experiments that impose noise on SMtruth

+ Overpass (Table 4) with experiments that use perfect observations (Table 3). In all cases, IRRGPBS has a
higher correlation with IRRGtruth on a weekly, rather than daily, time step. This is especially true when
IRRGtruth is applied 2 days per week, but the assumed irrigation schedule is continuous. IRRGPBS produced
from experiments assuming known timing of IRRGtruth are nondominated in a multiobjective optimization
context relative to each other (see gray rows in Table 4). Hence, this method is not timing specific and can be
used over a range of irrigation schedules, but the accuracy is heavily dependent on a priori knowledge of irri-
gation timing. Errors in IRRGPBS are dominated by issues that arise from discrepancies in timing between
particle irrigation and IRRGtruth rather than observational noise or frequency for experiments assuming
the timing of IRRGtruth is unknown (see white rows in Table 4).

5. Discussion and Conclusions

In this study, we evaluate a new approach for estimating irrigation magnitude by assimilating SM with an
LSM. Through synthetic experiments, the sensitivity of the DA system is assessed relative to (i) the window
length of the PBS algorithm, (ii) the frequency of observations, (iii) the amount of noise in the SM data, (iv)
the relative magnitude of irrigation compared to precipitation, (v) the magnitude of biases between models

Table 3
Summary Statistics From the Five Time Sensitivity Experiments, Where the Mean Irrigation Season Soil Moisture Represents the Mean Soil Moisture From
Respective Truth Simulations Over the Irrigated Season and Irrigation Summary Statistics Are Calculated Comparing IRRGPBS With IRRGtruth From the
Five DA Experiments

True irrigation schedule Particle irrigation schedule
Mean irrigation season
moisture (cm3 cm−3)

Irrigation summary statistics

PBIAS (%) R daily (weekly)

All day, every day All day, every day 0.26 −1 0.94 (0.95)
Every morning (4–10 a.m.) All day, every day 0.28 53 0.91 (0.95)
Every morning (4–10 a.m.) Every morning (4–10 a.m.) 0.28 4 0.94 (0.97)
All day, 2 days per week All day, every day 0.27 28 0.11 (0.94)
All day, 2 days per week All day, 2 days per week 0.27 1 0.79 (0.97)

Note. Rows shaded in gray indicate experiments where IRRGtruth and particle irrigation are applied on identical schedules, representing “known” irrigation
timing.

Table 4
Summary Statistics From the Five Time Sensitivity Experiments, Where Irrigation Summary Statistics Are Calculated Comparing IRRGPBS With IRRGtruth From
the Five DA Experiments

True irrigation schedule Particle irrigation schedule

Irrigation summary statistics

PBIAS (%) Daily R Weekly R

PCTL (15, 50, 85) PCTL (15, 50, 85) PCTL (15, 50, 85)

All day, every day All day, every day (−10, 0, 13) (0.59, 0.69, 0.84) (0.83, 0.88, 0.94)
Every morning (4–10 a.m.) All day, every day (34, 61, 95) (0.62, 0.75, 0.85) (0.86, 0.91, 0.93)
Every morning (4–10 a.m.) Every morning (4–10 a.m.) (−2, 13, 26) (0.68, 0.80, 0.86) (0.87, 0.93, 0.95)
All day, 2 days per week All day, every day (15, 34, 60) (0.05, 0.07, 0.08) (0.87, 0.91, 0.93)
All day, 2 days per week All day, 2 days per week (−25, −5, 4) (0.72, 0.75, 0.79) (0.78, 0.86, 0.94)

Note. Rows shaded in gray indicate experiments where truth irrigation timing is assumed to be known. The 15th, 50th, and 85th percentiles are reported for each
statistic from the 20 simulations conducted for each timing scenario.

10.1029/2019MS001797Journal of Advances in Modeling Earth Systems

ABOLAFIA‐ROSENZWEIG ET AL. 16



and observations, and (vi) the timing of irrigation. Experiments are designed in the context of assimilating
observations from the SMAP satellite with the VIC LSM. However, this DA system can be used with a wide
variety of SM observations and models. Based on the above results, the following conclusions can be drawn:

1. DA experiments using synthetic observations assigned SMAP's overpass schedule and zero random noise
produce accurate irrigation estimates (PBIAS < 2% and R > 0.9) for window lengths longer than 10 days.
Therefore, smoothing DA algorithms, for example, the PBS, must be used with this method rather than
filtering DA algorithms, for example, the particle filter, that assimilate single data points in isolation.
Experiments using a large window length, for example, 24 days, are more robust to overpass frequency
and observation noise because longer window lengths assimilate a greater number of observations in
each window. This provides the algorithm with more irrigation signal relative to random observational
noise and increases the likelihood of better irrigation estimates. These results are also consistent with
Brocca et al. (2018) where irrigation data were aggregated at a monthly time scale to reduce the influence
of observation noise.

2. DA performance is strongly related with the frequency of observations, where more frequent return per-
iods (e.g., every 2–3 days) produce more accurate estimates of irrigation than experiments using synthetic
observations with less frequent return periods (e.g., weekly or longer). Moving from synthetic observa-
tions with regular intervals to SMAP's irregular return period does not appreciably hinder performance.

3. Performance is directly affected by the amount of random noise in the signal. Experiments using syn-
thetic observations perturbed with less random noise (0.01–0.02 cm3 cm−3) yield better performance than
experiments using synthetic observations perturbed with larger random noise (0.03–0.04 cm3 cm−3).
Experiments that assimilate synthetic observations with both SMAP's return period and expected obser-
vational noise (0.04 cm3 cm−3) produce estimates of irrigation with a median PBIAS of 1% and R of 0.76,
and range of PBIAS and R of −3.98% to 13.85% and 0.57–0.94, respectively.

4. The presented methodology is likely to overestimate irrigation when the magnitude of true irrigation is
small in comparison to the range of particle irrigation because multiplicative precipitation perturbations
dominates the irrigation signal in these cases. Further, when constraints on IRRGPBS, that is, range of irri-
gation applied to particles, are asymmetric about IRRGtruth, IRRGPBS will be underestimated or overesti-
mated based on the direction of the skewness. In this study the upper constraint (30 mm day−1) was
further from IRRGtruth (3–8 mm day−1) than the lower constraint (0 mm day−1), thus causing random
noise in synthetic SM observations to favor overestimated irrigation throughout a season.

5. A large obstacle to implementing this method is the systematic bias between LSMs and observations. Bias
correction is necessary to implement this method to produce reliable real‐world irrigation estimates over
large areas. This analysis underscores the importance of developing and testing new bias correction
methods that will not erase unmodeled processes like irrigation.

6. The largest obstacle to implement this method is a priori knowledge of irrigation timing. When irrigation
timing is assumed to be known, the method is able to accurately predict the magnitude and temporal pat-
tern of IRRGtruth for a suite of irrigation schedules, but large errors arise in experiments where the timing
of IRRGtruth is assumed to be unknown. The presented algorithm estimates irrigation magnitudes given
model inputs, including an assumed irrigation scheduling. Therefore, the method is partially limited by
knowledge of the true irrigation schedule such that discrepancies in schedule between particulate and
truth irrigation can result in systematic biases between observed and modeled SM. These SM biases pro-
pagate to biases in irrigation estimates. Although this presents a limitation to the method, it also provides
the opportunity to use the method to assess the efficiency of irrigation strategies as a function of model
inputs.

This study presents an evaluation of a new method to estimate irrigation quantities using the PBS DA
method. Future studies that seek to evaluate the method in nonsynthetic applications should first address
the issue of identifying irrigation timing and also explore ways to correct biases between modeled and
observed SM so as to preserve the natively observed irrigation signal. Because bias correction is an active area
of research it may be easier to resolve than knowledge of irregular irrigation timing. Both of these are valu-
able pre‐processing steps to a successful application of this methodology. Applications of this method will
require identification of the start and end dates of the irrigation season at the model's spatial resolution by
employing methods such as that presented in Lawston et al. (2017) that showed comparing SMAP SM to
in situ precipitation data can identify the seasonal onset of irrigation. Future efforts to advance the
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science of irrigation estimation through DA could assess a priori bias correction methods in a bias aware DA
system and build upon ongoing LSM SM calibration efforts, for example, by NASA's Land Information
System team, or assess CDF‐matching observations to the climatology of an LSM using an irrigation scheme,
or could explore assimilating multiple remotely sensed variables that contain irrigation signal. Alternatively,
it may be fruitful to assess posterior bias correction strategies such as removing bias from estimated irriga-
tion by estimating model bias over adjacent nonirrigated cropland areas and use these to correct simulations
over irrigated pixels (Jalilvand et al., 2019). The issue of bias may also be ameliorated by using a different
type of model, for example, Hydrus‐1D, which has been shown to agree relatively well with SMAP retrievals
at core validation sites (Small et al., 2018).
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