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ABSTRACT

Soil hydraulic properties (SHPs) control infiltration and redistribution of moisture in a soil column. The

Noah land surfacemodel (LSM) default simulation selects SHPs according to a location’smapped soil texture

class. SHPs are instead estimated at seven sites in North America through calibration. A single-objective

algorithm minimizes the root-mean-square difference (RMSD) between simulated surface soil moisture and

observations from 1) a dense network of in situ probes, 2) Soil Moisture Ocean Salinity (SMOS) satellite

retrievals, and 3) SMOS retrievals adjusted such that theirmean equals that of the in situ network. Parameters

are optimized in 2012 and validated in 2013 against the in situ network. RMSD and unbiased RMSD

(ubRMSD) assess resulting surface soil moisture behavior. At all sites, assigning SHP parameters from a

different soil texture than the one that is mapped decreases the RMSD by an average of 0.029 cm3 cm23.

Similar improvements result from calibrating parameters using in situ network data (0.031 cm3 cm23). Cali-

brations using remotely sensed data show comparable success (0.029 cm3 cm23) if the SMOS product has no

bias. Calibrated simulations are superior to texture-based simulations in their ability to decrease ubRMSD at

times of year when the default simulation is worst. Changes to both RMSD and ubRMSD are small when the

default simulation is already good. Most calibrated simulations have higher runoff ratios than do texture-

based simulations, a change that warrants further evaluation. Overall, parameter selection using SMOS data

shows good potential where biases are low.

1. Introduction

Hydrologic land surface models (LSMs) use soil hy-

draulic properties (SHPs) to model redistribution and

drainage of water. Surface and root-zone soil moisture

content affects runoff, base flow, and partitioning of net

radiation between ground, sensible, and latent heat fluxes

(LHFs; Entekhabi et al. 1996; Betts et al. 1996). Water

and energy fluxes are thus dependent on SHPs. Land

surface parameterizations and soil properties in particu-

lar have been shown to significantly affect continental-

scale climate simulations (Pitman 2003; Richter et al.

2004; Osborne et al. 2004; Guillod et al. 2013).

SHPs in LSMs are typically assigned using laboratory-

derived lookup tables or empirical functions, both based

on mapped soil texture (Teuling et al. 2009). This ap-

proach is problematic because soil texture is a poor

predictor of SHPs (Gutmann and Small 2005, 2007). The

existence of soil texture maps allows the practice to

persist despite overwhelming evidence that it is ill

suited. First, mapped texture classes often do not match

the texture observed at the site. Xia et al. (2015) show

that correcting for such mismatches does not categori-

cally improve the root-mean-square difference (RMSD)

between simulations and in situ observations. Values for

both range from 0.03 to 0.09 cm3 cm23. Second, models

use the mean SHP values of each texture class, but
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commonly used soil databases [including Holtan et al.

(1968), Rawls et al. (1976), and Schaap and Leij (1998)]

exhibit more SHP variation within a single texture class

than between the 12-class means (Gutmann and Small

2005, 2007; Harrison et al. 2012; Soet and Stricker 2003).

This indicates an arbitrary discretization of SHPs and a

decrease in soil property diversity, which decreases the

likelihood of accurate soil properties (Wösten et al.

1995). Third, the scale of LSMs (typically 1–50km) is

incommensurate with that of the laboratory (;10 cm).

Soil properties are different when measured at a large

scale because they must account for smaller-scale het-

erogeneities (Grayson and Blöschl 2000; Harter and

Hopmans 2004). Fourth, soil structure, organic material,

bulk density, and preferential flow through macropores

influence soil drainage but are not captured by the typ-

ical assignation of sand/silt/clay percentages or texture

class (Beven andGermann 1982; Soet and Stricker 2003;

Gutmann and Small 2005, 2007). And finally, although

use of the Richards equation at field andwatershed scales

is common, it is not based on sound physical basis; models

at the kilometer scale only provide effective representa-

tions of unsaturated flow processes (Vereecken et al.

2007; Beven 1995). These problems make small-scale

information about soils and hydraulic parameters nearly

impossible to use in real-world upscaling approaches

(Vereecken et al. 2007). The limitations of such ‘‘bottom

up’’ approaches have led to instead using calibration to

select parameters. This ‘‘top down’’ strategy does not

depend on knowledge of soil classes within the model

domain (Ines and Mohanty 2009).

The calibration process matches modeled outputs to

observations of those fluxes or states by adjusting model

parameters, and it has been shown to improve model

performance (Franks and Beven 1997; Gupta et al. 1999;

Gutmann and Small 2010; Hogue et al. 2006; Harrison

et al. 2012). Studies to date have used runoff, soil tem-

perature, and heat fluxes to calibrate hydrologic model

parameters (Sorooshian et al. 1993; Yapo et al. 1996;

Franks and Beven 1997; Crow et al. 2003; Liu et al. 2005;

Hogue et al. 2005; Nandagiri 2007; Gutmann and Small

2007, 2010).

With a given model and observation set, calibration

schemes differ in the number of included parameters.

Studies such as Gutmann and Small (2010), Burke et al.

(1998), and Santanello et al. (2007) estimate only two to

five parameters, which allows them to evaluate the role

of each on the observed response. Gupta et al. (1999),

Houser et al. (2001), and others, on the other hand, allow

for complex interactions between parameters by simul-

taneously calibrating a dozen or more. Bastidas et al.

(2006), however, find overparameterization in complex

models, which decreases parameter identifiability. To

this point, Beven (1989) points specifically to ‘‘making

use of measured internal state variables’’ such as soil

moisture as a path toward reducing ‘‘equifinality,’’ that

is, that different parameter sets can produce equally

good simulations (Beven and Binley 1992).

Soil moisture observations are particularly well suited

for LSM calibration, as they capture a key component of

hydrologic behavior. Because of data availability, past

calibration experiments have only utilized soil moisture

observations in a small domain or in combination with

other data (e.g., Mattikalli et al. 1998; Wooldridge et al.

2003; Koren et al. 2008; Pauwels et al. 2009; Ines and

Mohanty 2009; Milzow et al. 2011; Harrison et al. 2012).

The present work calibrates a hydrologic model to two

large-scale observations of near-surface soil moisture:

1) basin-averaged in situ measurements and 2) remotely

sensed observations from the European Space Agency

(ESA) Soil Moisture Ocean Salinity (SMOS) satellite

mission. Multiyear data are available for both. Because

soil moisture alone has never been used to calibrate a

model at this temporal and spatial scale, we limit our

study to only four parameters that directly affect soil

moisture. This is the logical first step before expanding

to secondary parameters and interactions. We address

the following questions: 1) what aspects of modeled soil

moisture can be improved through calibration of SHPs

with soil moisture and 2) what are the strengths and

weaknesses of using SMOS in such calibrations? To

assess model calibration success, we investigate the re-

sulting absolute soil moisture values and soil moisture

anomalies. Absolute values affect the magnitude of

other model fluxes such as LHF and runoff (Betts et al.

1996; Entekhabi et al. 1996). Soil moisture anomalies are

useful for characterizing system dynamics (e.g., Kurc

and Small 2004) and for assimilation efforts (e.g.,

Reichle and Koster 2004; Crow et al. 2010; Juglea et al.

2010; Pan et al. 2012; Blankenship et al. 2014).

2. Methods

The model setup mimics that of the Noah LSM (Chen

and Dudhia 2001; Ek et al. 2003) in phase 2 of the North

American Land Data Assimilation System (NLDAS-2;

Xia et al. 2012). This framework allows our results to be

directly applicable to ongoing NLDAS and NLDAS-

type research. The calibration process uses observations

that are roughly commensurate with the 1/88 (;144km2)

NLDAS resolution, so soil moisture scaling is not part of

this study.

a. Model, parameters, and forcing data

We employ the widely used Noah LSM, version 3.3

(Chen and Dudhia 2001; Ek et al. 2003). Noah is run in a
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stand-alone configuration, although it can be coupled

directly to an atmosphericmodel (Skamarock et al. 2008).

The soil thickness is set to the default 2m, with layer

boundaries at 10, 40, 100, and 200cm. Noah solves the

Richards equation (Richards 1931) to simulate the soil

moisture content of each layer through time and allows

gravity drainage from the bottom soil layer. TheRichards

equation is presented here as in Chen et al. (1996):
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where u is the volumetric soil moisture (VSM) content

(m3m23 or cm3 cm23), t is time (s), z is depth (m), and

Fu (cm
3 cm23 s21) represents the sum of sources (positive)

and sinks (negative): infiltration into and evaporation

from the first layer and transpiration from layers that

contain roots. The remaining variables K and c are the

hydraulic conductivity (ms21) andwater tension (mH2O).

Noah uses the Campbell model to define their nonlinear

behavior (Campbell 1974):
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The four parameters in the above equations are

SHPs (Table 1): 1) an empirically determined constant

b (unitless), which is related to the pore size distribution;

2) the saturated soil moisture content usat (cm
3 cm23);

3) the saturated matric potential csat (mH2O), which is

the water tension at which air enters a saturated vol-

ume of soil; and 4) the saturated hydraulic conductivity

Ksat (m s21).

Through Eqs. (1)–(3), SHPs directly affect the flux of

water between Noah’s soil layers. Each parameter con-

trols one or more aspect of the simulated soil moisture

time series. For example, higher Ksat enhances gravity-

driven flow, which can result in drier surface soil. Non-

linear interactions between parameters exist, which is one

reason why formal calibration schemes may be superior

to manual selection of parameter values (Boyle et al.

2000). Prior studies with Noah demonstrate that soil

moisture and heat fluxes are sensitive to all four SHPs,

whether on their own or through interactions with other

parameters (Bastidas et al. 2006; Rosero et al. 2010).

We use hourly NLDAS-2 meteorological forcings

(Xia et al. 2012). Default model parameters are either

constant or are chosen according to soil texture and

vegetation (Table 2). State Soil Geographic (STATSGO)-

based soil textures and a lookup table from Cosby et al.

(1984) provide Noah with its four SHPs at each location

(Miller and White 1998; Mitchell et al. 2004). Noah’s

vegetation parameters are chosen according to the loca-

tion’s University of Maryland 1km Land Cover Classifi-

cation, based onAVHRRdata from 1981 to 1994 (Hansen

et al. 2000). These consist of rooting depth, minimum and

maximum leaf areas, emissivity, albedo, roughness height,

and canopy stress parameters. The fractional cover of

green vegetation (shdfac) is set to its monthly climatolog-

ical average from NLDAS Noah forcings between 1979

and 2014.

b. Study sites and soil moisture observations

Seven sites are used (Table 2): Marena, Oklahoma

(Mar); Walnut Gulch, Arizona (WG); Little Washita,

Oklahoma (LW); Fort Cobb, Oklahoma (FC); Little

River, Georgia (LR); St. Josephs, Indiana (SJ); and

Reynolds Creek, Idaho (RC). At each site, surface soil

moisture data are available from 1) a network of in situ

probes operated by the U.S. Department of Agriculture

Agricultural Research Service (USDA-ARS) and 2) the

ESA’s SMOS satellite mission (Kerr et al. 2010a). Soil

moisture is reported as VSM (cm3 cm23), representing

the ratio between volume of water and total soil volume.

A primary goal of these in situ networks is calibration

and validation of satellite products. Each has a distrib-

uted network of Stevens Water Hydra Probes placed at

5 cm depth and an upscaling function that qualifies it for

use at the 36-km scale (Colliander et al. 2015). The

networks’ ‘‘basin’’ average is thus representative of a

passive microwave satellite footprint (Jackson et al.

2010). Supporting studies have determined most of the

networks (WG, LW, LR, and RC) represent soil mois-

ture with high accuracy (;0.01 cm3 cm23) from 0 to 5 cm

(Jackson et al. 2012; Cosh et al. 2006, 2008; Bosch et al.

2006). FC has been shown to perform well in a multiyear

TABLE 1. SHP parameters, the limits of their uniform prior distributions, and the ranges of their texture-based default values.

Parameter Uniform prior distribution Noah default values

Name Symbol Units Min Max Min Max

Pore size distribution index b — 0.34 50.91 2.79 11.55

Saturated soil moisture content usat cm3 cm23 0.12 0.698 0.339 0.476

Saturated matric potential csat mH2O 0.036 4.01 0.036 0.759

Saturated hydraulic conductivity Ksat m s21 9.74 3 1027 1.51 3 1024 9.74 3 1027 4.66 3 1025
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stability study, though it has not been explicitly vali-

dated (Cosh et al. 2014). SJ is still under development,

but its design and instrumentation are similar to the

other sites.

Each sites’ 5-cm in situ averages are used for SHP

calibration. When available, we also use probes from

lower in the soil column to evaluate performance of the

calibrated models. Five of the seven sites have deeper

probes. We assign these to represent the second model

layer (10–40 cm) as follows: when two probes fall within

the second model layer, they are averaged. When only

one exists, it represents the entire layer. For both soil

layers, multiple probe locations contribute to the net-

work’s average. Observations are recorded hourly, but

for direct comparison with SMOS observations, only

0600 LT (local time) observations are used each day.

Hereafter, in situ VSM refers to the daily, network-

averaged soil moisture.

SMOS uses a passive, synthetic aperture, L-band ra-

diometer to retrieve soil moisture every ;3 days with

spatial resolution of ;1200km2 (Jackson et al. 2012).

The radiometer measures microwave brightness tem-

perature, which is then converted into a soil moisture

value according to the relationship outlined by Jackson

and Schmugge (1989) and detailed in Kerr et al. (2010b).

Vegetation affects the retrievals, but corrections for

vegetation are possible when vegetation water content is

less than 5kgm22 (Kerr et al. 2010a). SMOS has a sun-

synchronous orbit, which passes over the equator at

approximately 0600 (ascending) and 1800 LT (de-

scending). The SMOS algorithm’s underlying equations

are based on an assumption of uniform soil moisture and

soil/vegetation temperature over the sensing depth. The

ground surface is closest to meeting this assumption

when it has had maximal time to equilibrate from the

previous day’s fluxes (Jackson et al. 2012; Jackson 1980).

We therefore use the ascending (0600 LT) level 3 soil

moisture data, which are provided by theCentreAval de

Traitement des Données SMOS.

c. Calibration strategy and experiments

The general format for model calibration to a single

observational time series has been detailed in Vrugt

et al. (2008). We calibrate the four SHPs in Table 1.

Posterior distributions have limited sensitivity to prior

distributions (Harrison et al. 2012), so for simplicity,

priors are taken to be uniform between two bounds. We

use similar parameter ranges to those used by Harrison

et al. (2012), except that the ranges of csat andKsat priors

are narrowed to avoid unrealistic second-layer soil

moisture contents observed in some preliminary ex-

periments. The range of parameter values in the cali-

bration scheme is purposefully larger than the range ofT
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mean values used in default Noah simulations (Table 1).

This allows for increased parameter diversity and po-

tential advantages to calibrated values.

We calibrate SHPs by minimizing the differences

between surface soil moisture observations and simu-

lations. We quantify their differences with an objective

function (OF), which we choose to be the RMSD:

RMSD5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�(VSM

sim
2VSM

obs
)2

n

s
, (4)

where sim and obs indicate the simulated and observed

VSM, respectively, and n is the number of days that both

are available. RMSD is used in many hydrologic cali-

bration studies (Burke et al. 1997; Gupta et al. 1998;

Santanello et al. 2007; Peters-Lidard et al. 2008;

Gutmann and Small 2010; Harrison et al. 2012) and is a

convenient way to measure dispersion of the model re-

sidual around zero (Gupta et al. 1998). As in Albergel

et al. (2012), we use the terminology RMS difference,

instead of RMS error, because observations do not

represent true soil moisture.

We use the Differential Evolution Adaptive Me-

tropolis (DREAM) algorithm to search the parameter

space using 50 000–100 000 model simulations (Vrugt

et al. 2008, 2009). Each simulation is 2 years long: a cal-

ibration year (2012) following a 1-yr spinup (2011). The

spinup is sufficiently long for Noah SHP calibration

purposes (Gutmann and Small 2010). The exact number

of simulations depends on the R̂ statistic of Gelman and

Rubin (1992), indicating convergence to a stationary

posterior distribution. We ensure at least 2500 addi-

tional model simulations after convergence to charac-

terize the posterior distributions of the parameters in

each experiment. Simulations from converged parame-

ter sets are run for an additional year (2013) for vali-

dation against in situ soil moisture.

The DREAM algorithm’s lineage includes the Uni-

versity of Arizona Shuffled Complex Evolution (SCE-

UA) and Shuffled Complex Evolution Metropolis

(SCEM-UA) parameter estimation algorithms (Duan

et al. 1992; Vrugt et al. 2003). It is distinct in its ability to

provide posterior parameter distributions, which we use

to quantify uncertainty in our analyses.

At each study site, both in situ and remotely sensed

surface soilmoisture observations are available.With these

two sources, we produce three calibration experiments:

1) In situ:Minimize theOFbetween simulated and in situ

surface soil moisture. The calibration and validation

observations are from the same soil probes. This

experiment therefore provides an upper limit tomodel

performance at each site in the validation period.

2) SMOS: Minimize the OF between simulated and

remotely sensed soil moisture from the SMOS pixel

centered on each field site.

3) SMOSadj: Minimize the OF between simulated soil

moisture and a bias-free SMOS product. The SMOS

soil moisture time series has been adjusted through a

translation of the observations so that the mean of

the 2012 SMOS and in situ observations are equal.

Bias removal is completed on a site-by-site basis. In

the rare cases when a shifted moisture value would

drop below zero, it is limited to zero. This experiment

shows the potential of a bias-free SMOS time series

in our calibration framework.

Experiments produce posterior distributions for each

parameter. The single best parameter set is the one

whose simulation produces the maximum a posteriori

probability (MAP; in this case, lowest RMSD) in the

calibration period. The associated model run is referred

to as the calibrated simulation.

d. Texture-based simulations

A site’s soil texture designation (and thus SHPs) may

differ between global maps, local maps, and site obser-

vations (Guillod et al. 2013; Xia et al. 2015). We there-

fore carry out simulations using all 12 possible texture

designations at each site. These parameter sets and their

resulting simulations are hereafter called ‘‘texture

based.’’ They allow us to illustrate the range of states

and fluxes that are possible for a given location using the

current parameterization strategy. At each site, we

highlight two of these texture-based simulations: 1) the

default texture, which is used by NLDAS simulations,

and 2) the best texture, which minimizes the RMSD

between simulated and in situ surface VSM in the

calibration period.

The best texture simulation allows the calibration

results to be compared with those of an improved tex-

ture. We acknowledge that the best texture cannot be

determined in this fashion at sites that do not have soil

moisture instrumentation.

e. Assessment of model calibrations

We use the following:

1) RMSD between simulated and in situ VSM. While

the in situ soil moisture is not without its own

measurement and averaging errors, it is our only

proxy for the true surface soil moisture.

2) The arithmetic mean of VSM time series. This metric

provides insight into how minimizing RMSD affects

moisture biases.

3) RMSDbetween simulated and in situVSM anomalies

[unbiased RMSD (ubRMSD)]. UbRMSD provides a
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measure of how well each simulation captures soil

moisture dynamics. We calculate ubRMSD both for

the validation year as a whole (year-long ubRMSD)

and on a moving 90-day window throughout the

validation period (windowed ubRMSD). The latter

method identifies the time periods when calibration

yields the greatest improvements.

f. Study limitations and sources of error

1) REPRESENTATIVENESS AND ACCURACY OF

DATA PRODUCTS

Soil moisture variability increases with scale, so rep-

resentative basinwide in situ values require many ob-

servations (Famiglietti et al. 2008). The monitoring sites

used in this study are the best available, but they cannot

be perfect. Moreover, results from Mar must be con-

sidered differently. The probe type and installation

depth match the other sites, but Mar only includes four

sensors distributed across a 1km2 area. We include this

location to identify what useful information (if any) can

be gleaned from a site whose representative area is in-

termediate between a remotely sensed pixel and a

single probe.

The SMOSmission’s target accuracy of 0.04 cm3 cm23

RMSD is not met at all sites. In 2010, at WG, LW, LR,

and RC, RMSD values were 0.038, 0.042, 0.051, and

0.039 cm3 cm23, respectively, and biases were 0.003, 0.002,

0.026, and 20.023 cm3cm23, respectively (Jackson et al.

2012). Elsewhere in North America, SMOS biases of up

to20.12 cm3cm23 have been documented (Albergel et al.

2012; Collow et al. 2012; Al Bitar et al. 2012).

In situ, remotely sensed, and modeled depths are not

identical. The 5-cm in situ probes measure over a depth

of approximately 3–7 cm. This is similar to the first

model layer, 0–10 cm. The correspondence between re-

motely sensed and modeled VSM is not as exact. SMOS

retrieval depth is approximately 5 cm. However, the

sensing depth decreases after rainfall when the surface

layer is nearly saturated and increases to more than 5 cm

when the soil is dry (Jackson et al. 2012). To assess the

significance of this difference, we have completed our

parameter estimation analysis with the Noah first layer

thickness set to 0–5 cm instead of 0–10 cm. We find that

this change leads to trivial differences in both simulated

soil moisture time series and parameter distributions.

We continue with 0–10 cm thickness to avoid modifying

the standard model setup and to make our findings di-

rectly applicable to NLDAS Noah simulations.

Finally, we note that the spatial resolution of NLDAS-2

is finer than that of SMOS. Figure S1 in the supple-

mental material shows the different spatial coverages of

in situ, SMOS, and NLDAS data for all sites exceptMar,

which, as mentioned above, is of a different spatial scale.

2) CALIBRATION SCHEME

Adjusting specific parameters can compensate for

errors in other parameters, model structure, or input

data (Doherty and Welter 2010). The DREAM algo-

rithm limits the user to one OF, which has additional

weaknesses compared to multiobjective schemes: cali-

bration can lead to compensating biases in other aspects

of the system, such as LHF and runoff (Wöhling et al.

2013; Gupta et al. 1999; Salvucci and Entekhabi 2011).

In turn, changes to LHF of 15–20Wm22 can have a

significant impact on atmospheric processes (Schär et al.
1999). Despite these disadvantages, we wish to study the

potential of SMOS soil moisture in a single-objective

scheme before combining it with other constraining

states or fluxes. We lack observations of surface runoff,

base flow, and LHF, so a comprehensive evaluation of

all model fluxes is admittedly not possible. However,

these are high-quality soil moisture networks, and they

thus provide unique and powerful constraints on SHPs.

We supplement the validation by qualitatively assessing

the effects that calibrated parameter sets have on dis-

charge and LHF.

Even a model with ideal parameters may have struc-

tural inadequacies and meteorological forcing errors.

The latter has been shown to account for 20%–60% of

soil moisture prediction uncertainty (Hossain and

Anagnostou 2005). Finally, parameters selected through

calibration are not easily transferable to other scales or

ungauged locations (Liang et al. 2004; Troy et al. 2008).

To mitigate these problems, we have included a variety

of locations in this study, and in situ scales are roughly

commensurate with forcing data.

3. Results

a. Improvement of surface soil moisture

Surface VSM results are exclusively from the valida-

tion period and compare simulations with in situ

observations.

1) RMSD

Figure 1 shows an example of the calibration results at

SJ. We include soil moisture time series from the three

calibrations as well as the 12 texture-based simulations.

The site’s default soil texture, silty loam, is far from the

best: RMSD is 0.059 cm3 cm23. Five other textures yield

better soil moisture simulations. The best texture is

sandy loam, with an RMSD of 0.048 cm3 cm23. Thus, by

changing the soil texture designation, we can reduce
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model error by nearly 20%. Similar results are found at

all seven sites (Fig. 2, Table 3). At no site is the default

texture the same as the best texture. RMSDs for the

default simulations range from 0.03 to 0.11 cm3 cm23

(mean 0.07cm3cm23). If the best texturewere used at each

site, error would decrease by an average of 0.03cm3cm23,

bringing all but the RC simulation below 0.05cm3cm23,

the low end of the RMSD range found in default simula-

tions by Xia et al. (2015). Such improvement from switch-

ing soil type reflects a general failure of using mapped soil

texture to select SHPs but not necessarily a problem with

the 12 texture-based parameter sets themselves.

As expected, calibration to in situ observations im-

proves simulated soil moisture. For example, the best

in situ calibrated soil moisture time series at SJ (blue line,

Fig. 1) more closely follows the in situ observations than

the default simulation does. Across all sites, RMSD im-

proves by an average of 0.03 cm3 cm23. All but RC are

brought below 0.05 cm3 cm23. The improvements from

in situ calibration at each site are only slightly better than

the improvements made by replacing the default soil

texture with the best texture. At sites where the default

simulation performs well (Mar and LW), calibration

changes the RMSD very little. Equally important, these

best sites are not made worse through calibration. Sites

with poor default simulations benefit the most from cal-

ibration (WG, LR, and RC).

Calibration to SMOS observations does not consis-

tently improve RMSD. At SJ, the SMOS-calibrated soil

moisture is far below the in situ observations (red line,

Fig. 1). FC, WG, and RC are improved through SMOS

calibration (Fig. 2, Table 3), but an equal number are

made worse (Mar, SJ, and LR). The average change to

RMSD is close to zero.

At all seven sites, calibration to SMOSadj observations

results in a lower RMSD than the default simulations

(Fig. 2, Table 3).The average improvement is 0.03cm3cm23.

At SJ, the SMOSadj-calibrated simulation (green line,

Fig. 1) is better than the default and SMOS-calibrated

simulations. Like simulations calibrated to in situ,

the sites already performing well (Mar and LW)

maintain their good performance when calibrated to

SMOSadj.

While RMSD establishes model error, it does not

explicitly address how well model variability matches

observations. To this end, we have calculated coefficient

FIG. 1. An example time series at SJ. Shown are the basin-averaged in situ surface soil

moisture measurements (blue squares), the texture-based simulations (gray lines), the default

simulation (silty loam; black solid line), the best texture simulation (sandy loam; black dotted

line), and the three calibrated time series (blue indicates in situ, red indicates SMOS, and green

indicates SMOSadj). Precipitation is shown by dark blue bars.

FIG. 2. RMSD between simulations and in situ soil moisture at

each site in the validation period. Simulations include texture

based (gray lines), default (black solid lines), best texture (black

dotted lines), in situ calibrated (blue squares), SMOS calibrated

(red triangles), and SMOSadj calibrated (green diamonds). Error

bars show the range of performances from each calibration’s stable

posterior parameter distribution.
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of determination R2 values for all simulations shown

in Fig. 2, and the results are effectively the same

(Fig. S2).

2) MEAN VSM

Figure 3a shows how the mean VSM of each simu-

lation compares with the mean of the in situ observa-

tions. For all texture-based and calibrated simulations

except RC, the closer the match between simulated and

observed mean VSM, the lower the RMSD is. In this

light, it is not surprising that the SMOS retrievals

cannot be used to successfully select SHPs, since the

SMOS retrievals often have biases with respect to the

in situ observations. Sites whose SMOS-calibrated

simulations have a greater RMSD than default simu-

lations are Mar, SJ, and LR. They also have the worst

SMOS biases: 20.064, 20.101, and 0.136 cm3 cm23,

respectively. SMOS biases at FC, LW,WG, and RC are

smaller: 20.008, 20.008, 0.013, and 20.049 cm3 cm23.

At these sites, the SMOS and SMOSadj calibrations are

similarly successful at reducing or not changing RMSD.

These results qualify the utility of SMOS data. The

success of the SMOSadj calibrations is in large part due

to their unbiased nature, a characteristic imposed on the

calibration data by design prior to the experiment.

3) UBRMSD

We must determine the value of SMOS observations

independent of their biases. Figure 4 shows VSM anom-

alies. Themodel does not capture the wetting events near

the end of June nor the drying period at the end of Au-

gust, no matter what parameter set is used. We quantify

such temporal dynamics in each simulated VSM time

series using year-long and windowed ubRMSD.

We first summarize the year-long ubRMSD results

(Fig. 3b, Table 4). The best texture simulations do not

minimize year-long ubRMSD at all sites. At Mar, SJ,

and RC, a number of textures would have produced

TABLE 3. RMSD between simulations and observed in situ soil moisture during the validation period. For readability, all values are

expressed as hundredths of cm3 cm23 (divide by 100 for actual values). Change D is with respect to the default simulation. Boldface

indicates improvement of at least 0.005 cm3 cm23 (or 0.5 in the table); italics indicate degradation of at least 0.005 cm3 cm23.

Default texture Best texture In situ SMOS SMOSadj

Site Classa RMSD Classa RMSD D RMSD D RMSD D RMSD D

FC SiL 5.4 LS 2.9 22.5 3.0 22.5 3.4 22.0 3.0 22.4
Mar SL 4.8 SCL 4.4 20.4 4.0 20.7 9.8 5.0 4.6 20.2

LW SL 3.3 LS 2.7 20.6 3.2 20.1 3.7 0.5 3.3 0.0

SJ SiL 5.9 SL 4.8 21.1 4.7 21.2 12.1 6.2 4.8 21.1

WG L 7.9 S 1.4 26.5 1.5 26.4 3.3 24.7 2.3 25.6
LR LS 10.7 S 3.4 27.3 2.6 28.2 14.0 3.3 3.3 27.4

RC L 9.8 LS 9.0 20.0 7.2 22.6 6.2 23.6 6.2 23.6

Mean 6.8 3.9 22.8 3.7 23.1 7.5 0.7 3.9 22.9

a Soil types: S, sand; L, loam; Si, silt; C, clay.

FIG. 3. (a)MeanVSMand (b) year-long ubRMSD in the surface layer. Symbols and lines are as in Fig. 2, with in situ

observations also included as black circles.
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lower ubRMSDs than the best texture did. This failure

indicates that minimization of RMSD does not require

minimization of ubRMSD. It only requires a goodmatch

between mean values of the time series.

Calibrated soil moisture curves at most sites either do

not change or improve the year-long ubRMSD over the

default simulation. In five experiments, calibrated simu-

lations improve year-long ubRMSD more than any

texture-based simulation can: SJ calibrated to in situ and

SMOSadj, LR calibrated to in situ, and RC calibrated to

SMOS and SMOSadj. In these cases, unlike in texture-

based simulations, minimization of RMSD does not

merely match simulated and observed mean VSM. It has

the additional effect of improving soil moisture dynamics.

At the other extreme are FC and LW, whose cali-

brated and texture-based simulations all have the same

year-long ubRMSD. Despite a wide range of RMSDs,

all simulations have identical abilities to capture soil

moisture dynamics. RMSD and the calibration process

at these sites therefore depend entirely on the match

with in situ mean VSM.

Changes to year-long ubRMSD are not large. The

windowed ubRMSD, however, exposes notable im-

provements to calibrated simulations’ soil moisture dy-

namics. We see the largest improvements occurring at

sites and times of year when the default simulation is

worst. Figure 5 compares the default simulation’s win-

dowed ubRMSD to that of the three calibrated and best

texture simulations at SJ. The default simulation has the

highest ubRMSD around March and April, which are

times of year when all three calibrated simulations show

the largest improvements to windowed ubRMSD. The

best texture simulation, on the other hand, has mixed,

small effects on ubRMSD throughout the year, regard-

less of the default simulation’s performance.

Beyond SJ, improvements to ubRMSDaremade at all

sites and time periods when the default windowed

ubRMSD is poor. In addition, ubRMSD is not made

worse when the default simulation is good. In Fig. 6, the

x axis shows the windowed ubRMSD of the default

simulation for all validation days. The y axis shows the

changes that each calibration or best texture would

make on each day (negative numbers indicate im-

provement). We use a black dotted line to define a

threshold default ubRMSD at 0.04 cm3 cm23. We aver-

age the windowed ubRMSD both below and above this

threshold, shown with the solid colored lines. Below the

threshold, where the default simulations are good, all

calibrations have a mixed, small effect on ubRMSD.

There are no increases greater than 0.005 cm3 cm23 at

FIG. 4. As in Fig. 1, but with the mean of each time series removed.

TABLE 4. As in Table 3, but for ubRMSD and without soil class.

Default texture Best texture In situ SMOS SMOSadj

Site ubRMSD ubRMSD D ubRMSD D ubRMSD D ubRMSD D

FC 2.9 2.9 20.06 2.8 20.15 2.8 20.10 2.9 20.09

Mar 4.4 4.2 20.20 3.8 20.63 4.2 20.26 3.9 20.51

LW 2.8 2.7 20.06 2.8 0.06 2.7 20.04 2.8 20.03

SJ 5.3 4.6 20.63 4.3 20.96 4.0 21.29 4.2 21.10
WG 2.1 1.4 20.67 1.5 20.62 2.7 0.60 2.2 0.14

LR 2.8 2.8 20.02 2.5 20.31 3.0 0.20 3.3 0.46

RC 8.5 8.7 0.25 7.2 21.25 5.7 22.78 5.7 22.75

Mean 4.1 3.9 20.2 3.6 20.55 3.6 20.52 3.6 20.55
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any site. Above the threshold, which is crossed at Mar,

SJ, and RC, calibrated simulations have a lower

ubRMSD than default simulations do, by as much as

0.026 cm3 cm23. We highlight this region of the plot by

shading it yellow. In contrast, the best texture simula-

tions do not improve ubRMSD at times when the de-

fault simulation is above the threshold. Improvement at

Mar and SJ are present but small. At RC, the best tex-

ture is worse even than the default simulation.

b. Changes to other model states and fluxes

In this section, we describe the effects of calibration

on deeper soil moisture, runoff, and LHF. Because none

of these three variables were involved in calibration, the

following results utilize modeled data from both the

calibration and validation periods.

1) DEEPER SOIL MOISTURE

The 10–40 cm in situ data have not been verified as

an accurate measurement of the second model layer’s

VSM.We therefore assess performance with ubRMSD

(Fig. 7a), which depends only on changes to soil

moisture, not absolute VSM values. The best texture

simulations have no consistent effect on second-layer

dynamics. FC, Mar, and LW stay the same; SJ is made

worse; and LR is improved. Calibrated simulations do

not harm the model’s second-layer dynamics and often

slightly improve them. Only the in situ calibration at SJ

is made worse.

Figure 7b shows the mean second-layer VSM for all

simulations. The calibrated simulations produce drier

second-layer VSM than the default in all cases except

the in situ and SMOSadj calibrations at Mar and the

SMOS calibration at LR. The best texture simulations

also decrease mean second-layer moisture at all sites

except Mar. The deeper (third and fourth) soil layers

are similarly affected (not shown). For reference, we

also show the mean in situ soil moisture, which can be

either drier or wetter than the default simulation, al-

though these in situ observations cannot be considered

as truth.

2) RUNOFF AND LHF

Conservation of mass requires that changes to soil

moisture magnitudes and dynamics be associated with

changes in runoff and LHF. We look first at each site’s

surface runoff, subsurface runoff, and total runoff ratio

(Fig. 8). With only two exceptions (in situ at WG and

SMOSadj at LR), calibrated simulations have more

surface runoff than default simulations do. This change

corresponds to an increase in the runoff ratio (total

runoff/total precipitation) for all experiments except

in situ and SMOSadj at Mar, and SMOS at LR, which

have counteracting decreases in subsurface runoff. We

include runoff ratios from all 12 texture-based simula-

tions at each site to illustrate the range of values possible

without calibration. The calibrated simulations are

mostly at the high end of this range. In contrast, the best

textures produce simulations whose runoff ratios are

more often at the low end or in the middle of this range.

Figure 9 shows the differences in each simulation’s

mean daily summertime LHF. We focus on summer

because that is the season in which LHF is greatest. The

range of LHF produced by the 12 texture-based pa-

rameters is generally less than 15–20Wm22, and the

best texture is at most only 8.3Wm22 different from the

default simulation. On the other hand, three of the seven

sites have significantly lower (.20Wm22) LHF values

after calibration: FC, SJ, and LR. The remaining four

sites have changes to LHF that are relatively small (less

than 10Wm22). We do not have flux tower data at all

sites to determine whether LHF should be much dif-

ferent from that of the default simulation, but together

the increased surface runoff and decreased LHF data

FIG. 5. Windowed ubRMSD at SJ, from the (a) in situ,

(b) SMOS, and (c) SMOSadj experiments and (d) the best texture

simulation. Default simulation is shown in black. Calibrated and

best texture simulations are shown in blue. Green shading

highlights periods when the calibrated or best texture simulation

is better than the default simulation. Red shading shows the

reverse.
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indicate that calibrated parameters allow less water to

pass through the soil column during rainfall events.

c. Parameter values and trends

The DREAM algorithm, in addition to identifying a

MAP value, produces a posterior probability distri-

bution for each experiment. Similarly, Cosby et al.

(1984) provide not only the mean of each texture class

but also standard deviations. We illustrate the differ-

ences between each distribution using usat as an ex-

ample, which contains some commonalities that hold

true for all four SHPs (Fig. 10). The supplemental

material contains all default and calibrated parameter

values in Table S1. It also includes Figs. S3–S5, which

show the posterior distributions of the other three

parameters. At most sites, the calibrated parameters

occupy a narrower range than they do in the laboratory

measurements of Cosby et al. (1984). Moreover, most

MAP parameter values fall within the Gaussian dis-

tribution of the prescribed texture class, evidence that

the calibrated parameter values are reasonable

estimates. The remainder of this section focuses on

summarizing the differences between MAP values and

texture class mean values.

Except for SMOSadj at LR, all experiments and all

best textures result in usat being lower than its default

assignment. We show in Fig. 11 that this parameter

correlates well with the mean VSM of its calibration

time series, which is lower than that of the default sim-

ulation in almost all cases (Fig. 3a). We include a line

connecting the in situ and SMOS data at each site to

show that this relationship is always positive within a

location. The SMOSadj usat values fall between those of

the in situ and SMOS calibrations; SMOSadj is a hybrid

of the two observational time series. The SMOSadj cal-

ibration at LR is clearly visible here as an outlier.

All calibrated Ksat parameters are lower than the de-

fault values with only two exceptions: SMOSadj calibra-

tion at LR and in situ at WG. In contrast, the best texture

values are all higher than the default values, except at

Mar. This division is the most distinct of the four param-

eters, and we address its implications in the discussion.

FIG. 6. The default simulation’s windowed ubRMSD and the change D that four alternative simulations can make: in situ calibrated

(blue squares), SMOS calibrated (red triangles), SMOSadj calibrated (green diamonds), and best texture (gray circles). Dotted line shows

0.04 cm3 cm23 threshold. Colored horizontal lines show mean values on each side of the threshold. Yellow shading shows where the

default is worst and can be improved.
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Neither b nor csat change much with calibration. The

value of b remains similar to the default value, and csat

values are similar or slightly lower. For both, however,

the best texture values are consistently lower than the

default. The only exception for b is Mar, where it is

slightly higher, and for csat is LR, where it already had

the lowest possible value.

d. Nonbehavioral simulations at LR

LR has a number of problems with its calibrated

simulations and parameters. Figure 12 shows the ob-

servational time series, default simulation, and rainfall

at LR. The rainfall and vegetative cover are higher than

at any other site (Table 1). The in situ observations are

lower than all but the arid WG site. The default

simulation, likely because of this inconsistency, is poor,

having a higher RMSD than any other location (Fig. 2).

In all three LR calibration experiments, parameter

values move away from the default, and simulations are

nonbehavioral. When LR is calibrated to in situ, there

is more than twice as much surface runoff as in any

other simulation, and summer LHF decreases by

20Wm22. When LR is calibrated to SMOS, the simu-

lation’s surface soil moisture RMSD becomes higher

than that of any other. Also, the value of the b param-

eter reaches its upper limit, which may not be physi-

cally realistic. Finally, when LR is calibrated to

SMOSadj, the resulting simulation has 1.5 times the

subsurface runoff than the next highest simulation, and

summer LHF decreases by more than 20Wm22. In

FIG. 8. (a) Runoff ratio at each site for each calibration over 2012–13. Corresponding volume of (b) surface and

(c) subsurface runoff. Symbols and lines are as in Fig. 2. Subsurface runoff at LR calibrated to SMOSadj is off-scale,

at 1065mm.

FIG. 7. (a) UbRMSD and (b) mean VSM in second model layer. ND indicates no data are available below 10 cm.

Symbols and lines are as in Fig. 2, with in situ observations also included as black circles.
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addition, the usat value is clearly an outlier (Fig. 11), and

the b value reaches its minimum value.

The mismatch between simulated and observed VSM

at LR is too great to be reconciled through parameter

calibration. The resulting nonbehavioral simulations

reveal the following possibilities: 1) VSM data are not

representative of the basin, 2) other parameters or

model physics do not adequately characterize this site,

and 3) meteorological forcings are inaccurate.

4. Discussion

Using the mapped soil texture and the standard SHP

lookup table does not yield optimal Noah parameters.

Simulations can be improved by changing the site’s soil

texture designation or by calibrating soil parame-

ters using surface soil moisture from either in situ or

SMOSadj observations. In both cases, RMSD decreases

mainly because of improved agreement between the

simulated and observed mean surface VSM. Calibrating

to SMOS alone does not reliably improve simulations.

There are tradeoffs to using calibrated and best texture

parameters. It is more likely that total column soil

moisture, runoff, and LHF are affected through cali-

bration, possibly yielding nonbehavioral simulations.

On the other hand, no texture-based parameter set im-

proves soil moisture dynamics as much as calibrated

simulations do.We find this to be especially true at times

and locations when the default simulation is worst.

Because of the poor performance of simulations cali-

brated to SMOS, we limit the remainder of our discussion

to parameters and simulations from 1) the best in situ and

SMOSadj calibrations and 2) the best texture.

FIG. 10. The distributions of the usat parameter at each site. Vertical dashed lines indicate the lower and upper constraints placed on the

calibration algorithm. Normalized posterior probability density functions at each site for each calibration scheme are shown with colored

curves. Laboratory-derived texture-based distributions are shown inblack (Cosby et al. 1984).Markers on the x axis show theMAPparameter

values for the in situ (blue squares), SMOS (red triangles), and SMOSadj (green diamonds) calibrations. Along the bottom, gray bars show all

texture-based parameter values, black bar shows default parameter value, and dotted bar shows the best texture value.

FIG. 9. Mean summertime (May–August) LHF at each site for

each calibration and texture-based simulation. Symbols and lines

are as in Fig. 2.
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In situ and SMOSadj-calibrated parameters all have

lower usat and Ksat values than the default simulation

does. The effect of decreasing usat is to lower the

threshold for surface runoff, lower the field capacity and

residual VSM, and increase the relative conductivity of

soil in the column. All three changes decrease the mean

modeled surface VSM. The role of lowerKsat values is to

decrease the speed at which water can be transferred into

and through the soil column. Subsurface runoff decreases,

and again, the likelihood of surface runoff increases.

These processes explain our experimental results: lower

VSM in calibrated simulations. Because water availabil-

ity is lower, plant transpiration and overall LHF also

decrease for all calibrations except SMOSadj at WG,

where there is limited vegetation. Subsurface runoff is

unchanged or lower in all cases except SMOSadj at LR.

An unfortunate side effect of calibration is the possi-

bility of nonbehavioral simulations. All three calibrated

simulations at LR are unreasonable in some way. They

provide extreme runoff volumes and parameter values

at the edges of their ranges. In addition, the changes to

LHF seen at SJ and FC cannot be verified and thus must

be considered as potentially problematic. We attribute

the LR failures in part to it being wet andwell vegetated.

Large amounts of precipitation limit the number of soil

dry-down events, making SHPs less important relative

to meteorological forcings. SMOS retrievals are subject

to a wet bias on days with precipitation because of a

shortening of the sensing depth (Jackson et al. 2012).

Vegetation also increases the chances of inaccurate

SMOS retrievals. Poor SMOS performance at LR is not

new. In 2010, it had the highest RMSD among LR, WG,

LW, and RC (Jackson et al. 2012).

The best texture parameters result in simulations with

lower mean surface VSM than default simulations, but

they do not change physical processes of the model as

much as calibrated parameters do. Surface runoff re-

mains the same. Every site’s best texture has lower b and

csat values than its default texture, which decreases the

water tension at a given moisture level. Together with

higher Ksat values, these three parameters allow faster

drainage through the soil column, but the overall volume

of subsurface flow does not necessarily change. Because

water is still transmitted through the lower layers, LHF is

maintained at similar levels to the default simulation.

We have shown important differences in the ability of

calibrated and texture-based simulations to capture

wetting and drying events. When the default simulation

is behaving poorly, all textures suffer from similar

problems. Mar, SJ, and RC are the three locations that

exhibit high ubRMSDs during some portion of the year.

FIG. 12. LR surface soil moisture content of the default simulation (black line), in situ observations (blue

squares), and SMOS observations (red triangles). Daily precipitation is also included.

FIG. 11. The calibrated usat and the mean VSM for in situ

(squares), SMOS (triangles), and SMOSadj (diamonds) observa-

tions. Colors indicate site: FC, red; Mar, blue; LW, green; SJ, or-

ange; WG, brown; LR, pink; and RC, gray.
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Visual inspection of the problematic time periods re-

veals that they occur during successive wetting and

drying events. Calibrated simulations show decent

agreement with observations. Low Ksat values allow

surface soil moisture to increase dramatically during

rain events because they limit infiltration to lower layers.

Excess rainfall is shed as surface runoff, so subsequent

drying is rapid. Texture-based parameters poorly char-

acterize events that dry quickly. They allow for more

infiltration, and subsurface runoff and transpiration are

by nature slower than surface runoff.

Our study indirectly assesses the effect of scaling on

SHPs. Texture-based parameters were developed in

small-scale laboratory settings (Cosby et al. 1984). The

modeling in this study applies to watersheds on the order

of hundreds of square kilometers. By identifying the

best texture for each site, we are implicitly identifying

the best texture for use at that larger scale. Thus, we

reiterate the differences between mapped textures and

best textures: b, usat, andcsat decrease andKsat increases.

The change to b causes soils to drain more easily and

decreases the residual VSM. The change to usat causes

more runoff, higher relative hydraulic conductivity, and

lower overall moisture levels. The changes to csat and

Ksat cause faster infiltration. These processes are con-

sistent with the existence of macropores at larger scales

and with the positive relationship between hydraulic

conductivity and scale in heterogeneous media (Schulze-

Makuch et al. 1999). Although the spatial coverage at

Mar is small, its calibrated parameter values were well

behaved and not significantly different from those at the

other sites.

There are different challenges associated with

implementing a calibration strategy or choosing the best

texture class at a continental scale. A successful calibra-

tion requires high-quality in situ measurements or an

unbiased remotely sensed product. At present, neither of

these exists outside of specific, well-studied regions.

NASA’s Soil Moisture Active Passive (SMAP) mission

(Entekhabi et al. 2010) may provide data that meet such

requirements, but the changes to runoff and LHF dis-

cussed here call for a more extensive investigation to

assess viability. Alternatively, we can focus on

developing a revised soil texture map. Presently, soil

maps are associated with actual observations. At our

study sites, however, the best texture is different from the

mapped texture. We suggest using remotely sensed data

to select the best textures at a number of verifiable lo-

cations. Then, regionalization techniques could be used

to apply the best textures continent-wide (Singh et al.

2012). This will require remotely sensed data of higher

quality (smaller or no bias) than we presently have, which

we look to SMAP or SMOS reprocessing to provide.

5. Conclusions

We summarize our main findings as follows:

1) The mapped soil texture designations used in

NLDAS-2 simulations do not provide optimal SHPs

for Noah at all sites (FC, Mar, LW, SJ, WG, LR, and

RC). Simulations with parameters from a different

texture class would match surface soil moisture

observations more closely. At SJ and WG, the best

textures also improve ubRMSD.

2) Calibration of SHPs is successful when we use in situ

or unbiased SMOS observations: the resulting

RMSDs between simulated surface soil moisture

and in situ observations are lower than those from

the default simulations. SMOS observations are not

useful for calibration at Mar, SJ, and LR because of

bias in the product.

3) Calibration improves the simulation of surface soil

moisture dynamics during time periods when default

modeled wetting and drying is worst.

4) Little or no change is made to surface soil moisture

RMSDor ubRMSDwhen the default simulations are

already good.

5) The best textures and calibrations all produce simu-

lations that have lower mean soil moisture than the

default simulations, both at the surface and at depth.

The best texture simulations allow for faster drainage

through the column, whereas the calibrated simula-

tions produce more surface runoff.
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