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State of the Art in Large-Scale Soil Moisture Monitoring

Review & Analysis—Soil Physics

The science and practice of large-scale soil moisture monitoring has en-
tered a stage of unprecedented growth, with the potential to transform 
scientific understanding of the patterns and dynamics of soil moisture 

and soil-moisture-related processes. Large-scale soil moisture monitoring may 
lead to improved understanding of soil moisture controls on water, energy, and 
C fluxes between the land and atmosphere, resulting in improved meteorological 
forecasts and climate projections. Soil moisture measurements are also key in as-
sessing flooding and monitoring drought. Knowledge gained from large-scale soil 
moisture observations can help mitigate these natural hazards, yielding potentially 
great economic and societal benefits. We use large-scale to refer to spatial support 
scales of >12 m2 for a sensor or spatial extents of >1002 km2 for a sensor network 
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Soil moisture is an essential climate variable influencing land–atmosphere 
interactions, an essential hydrologic variable impacting rainfall–runoff pro-
cesses, an essential ecological variable regulating net ecosystem exchange, 
and an essential agricultural variable constraining food security. Large-scale 
soil moisture monitoring has advanced in recent years, creating opportunities 
to transform scientific understanding of soil moisture and related processes. 
These advances are being driven by researchers from a broad range of disci-
plines, but this complicates collaboration and communication; and, for some 
applications, the science required to utilize large-scale soil moisture data is 
poorly developed. In this review, we describe the state of the art in large-scale 
soil moisture monitoring and identify some critical needs for research to opti-
mize the use of increasingly available soil moisture data. We review represen-
tative examples of (i) emerging in situ and proximal sensing techniques, (ii) 
dedicated soil moisture remote sensing missions, (iii) soil moisture monitoring 
networks, and (iv) applications of large-scale soil moisture measurements. Sig-
nificant near-term progress seems possible in the use of large-scale soil mois-
ture data for drought monitoring. Assimilation of soil moisture data for meteo-
rological or hydrologic forecasting also shows promise, but significant chal-
lenges related to spatial variability and model structures remain. Little prog-
ress has been made in the use of large-scale soil moisture observations within 
the context of ecological or agricultural modeling. Opportunities abound to 
advance the science and practice of large-scale soil moisture monitoring for 
the sake of improved Earth system monitoring, modeling, and forecasting.

Abbreviations: AirMOSS, Airborne Microwave Observatory of Subcanopy and Subsur-
face; AMSR-E, Advanced Microwave Scanning Radiometer for the Earth Observing Sys-
tem; ASCAT, Advanced Scatterometer; AWDN, Automated Weather Data Network; COS-
MOS, COsmic-ray Soil Moisture Observing System; DTS, distributed temperature sensing; 
ERS, European Remote Sensing; ESA, European Space Agency; ET, evapotranspiration; 
GPS, global positioning system; IR, interferometric reflectometry; ISMN, International Soil 
Moisture Network; NWP, numerical weather prediction; RFI, radio frequency interference; 
RZSM, root zone soil moisture; SCAN, Soil Climate Analysis Network; SMAP, Soil Mois-
ture Active Passive; SMI, Soil Moisture Index; SMOS, Soil Moisture Ocean Salinity; SNR, 
signal to noise ratio; SWD, soil water deficit; TDR, time domain reflectometry.
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(Crow et al., 2012; Western and Blöschl, 1999). In this review, 
areas are often enumerated in the XX2 format to indicate the 
length of one side of a square of the given area, e.g., 10,000 km2 
= 1002 km2. New developments continue within the realm of 
in situ sensors that monitor soil moisture at the point scale, i.e., 
<12 m2 support. These point-scale sensors have been reviewed 
recently (Dobriyal et al., 2012; Robinson et al., 2008) and are 
not considered here except within the context of large-scale net-
works. Rather, this review aims to broadly describe the state of 
the art in large-scale soil moisture monitoring. Airborne and sat-
ellite remote sensing approaches for soil moisture are considered 
large-scale monitoring techniques in this review.

To provide context, it is helpful to begin with a brief his-
torical overview of soil moisture monitoring in general. The first 
major technological advance in modern soil moisture monitor-
ing can be traced to the development of the neutron probe after 
World War II (Evett, 2001). The measurement of soil moisture 
based on neutron thermalization first appeared in the peer-re-
viewed literature in a study by Iowa State College (now Univer-
sity) soil physicists, Gardner and Kirkham (1952). This technol-
ogy was soon commercialized under a contract between the U.S. 
Army Corps of Engineers and Nuclear-Chicago Corporation, 
and by 1960, hundreds of neutron probes were in use around 
the world (Evett, 2001). The neutron probe remained the de 
facto standard for indirect soil moisture measurement until a soil 
physicist and two geophysicists working for the Government of 
Canada made a key breakthrough in using dielectric properties 
to measure soil water (Topp et al., 1980). Despite initial skep-
ticism from the soil science and remote sensing communities 
(Topp, 2006), the time domain reflectometry (TDR) approach 
of Topp et al. (1980) eventually became a dominant technol-
ogy for soil moisture monitoring and created for the first time 
the possibility of automated, multiplexed, unattended, in situ 
monitoring (Baker and Allmaras, 1990). By the 1990s, the TDR 
technology had proven the value of electromagnetic methods for 
monitoring soil moisture, and an avalanche of impedance or ca-
pacitance type probes followed (Robinson et al., 2008). These 
capacitance probes typically operate at frequencies much lower 
than the effective frequency of TDR. As a result, these probes 
are simpler and less expensive but also less accurate than TDR 
(Blonquist et al., 2005). Much effort has also been devoted to 
the development of heat dissipation (Fredlund and Wong, 1989; 
Phene et al., 1971; Reece, 1996) and heat pulse sensors (Bristow 
et al., 1993; Campbell et al., 1991; Heitman et al., 2003; Och-
sner et al., 2003; Song et al., 1999; Tarara and Ham, 1997) for 
soil moisture measurement, with reasonable success.

While Canadian researchers were beginning to develop the 
groundbreaking TDR method, scientists in the United States were 
pioneering remote sensing of soil moisture from tower, aircraft, 
and satellite platforms using microwave radiometers (Schmugge 
et al., 1974), scatterometers (Dickey et al., 1974), synthetic aper-
ture radar (Chang et al., 1980), and combined radar–radiometer 
systems (Ulaby et al., 1983). Various other techniques were also 
introduced during the same time, including methods based on 

polarized visible light (Curran, 1978), thermal inertia (Pratt and 
Ellyett, 1979), and terrestrial g radiation (Carroll, 1981). Satellite 
remote sensing approaches in particular have engendered much 
enthusiasm and interest with their promise of global data cover-
age, leading Vinnikov et al. (1999) to speculate that, in regard to 
long-term soil moisture monitoring, “The future obviously be-
longs to remote sensing of soil moisture from satellites.” And, in 
fact, the intervening decades of research on remote sensing of soil 
moisture are now beginning to bear fruit in terms of operational 
satellites for large-scale soil moisture monitoring.

Not everyone has been content to wait for the arrival of op-
erational soil moisture satellites; rather, some have envisioned and 
created large-scale in situ monitoring networks for soil moisture. 
The earliest organized networks were in the Soviet Union and used 
repeated gravimetric sampling (Robock et al., 2000). The Illinois 
Climate Network was the first large-scale network to use a nonde-
structive measurement device, the neutron probe (Hollinger and 
Isard, 1994), while the USDA-NRCS Soil Climate Analysis Net-
work (SCAN) (Schaefer et al., 2007) and the Oklahoma Mesonet 
(McPherson et al., 2007) pioneered the use of automated, unattend-
ed sensors in large-scale soil moisture networks during the 1990s. 
Since then, numerous networks have emerged around the world and 
have come to play vital roles in the science and practice of large-scale 
soil moisture monitoring, not the least of which is their role in cali-
brating and validating satellite remote sensing techniques.

The past 10 yr have witnessed the emergence of potentially 
transformative new soil moisture technologies, which are begin-
ning to fundamentally alter the possibilities for large-scale moni-
toring. These new methods include the COsmic-ray Soil Moisture 
Observing System (COSMOS), GPS-based techniques, and fiber 
optic distributed temperature sensing (DTS) approaches (Larson 
et al., 2008a; Sayde et al., 2010; Steele-Dunne et al., 2010; Zreda 
et al., 2008). Meanwhile, the number and scope of large-scale 
automated soil moisture monitoring networks has been steadily 
increasing, both in the United States and around the world; and 
in 2009, the European Space Agency (ESA) launched the Soil 
Moisture Ocean Salinity (SMOS) satellite, the first one designed 
specifically for soil moisture monitoring (Kerr et al., 2010).

Despite these developments, many challenges remain with-
in the realm of large-scale soil moisture monitoring. The recent 
progress in this field has been enabled by contributions from 
many different disciplines, and future progress will probably be 
interdisciplinary as well, but staying informed about new devel-
opments can be challenging when the research is spread across 
a broad range of science disciplines from soil science to remote 
sensing to geodesy to meteorology. Contemporary soil physi-
cists, whose predecessors were instrumental in birthing the mod-
ern era of soil moisture monitoring, have been largely focused on 
development and testing of point-scale measurement techniques 
and have perhaps not been adequately engaged in advancing the 
science of large-scale monitoring. Great advances have been made 
in satellite remote sensing approaches for estimating surface soil 
moisture, but the coarse horizontal resolution and the shallow 
sensing depth are significant limitations for many applications 
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(Wagner et al., 2007). Furthermore, the science and technology 
required to actually use large-scale soil moisture data is relatively 
underdeveloped. There has been a dearth of research investment 
in developing modeling and forecasting tools informed by soil 
moisture data from large-scale in situ networks. There has also 
been little research on the use of remotely sensed soil moisture 
products for applications beyond weather forecasting or stream-
flow prediction. This was understandable in previous decades 
when the widespread availability of such data was a distant pros-
pect, but the circumstances have changed. Soil moisture data are 
now common and may be ubiquitous in the near future.

In light of these circumstances, we seek to meet the need 
for a cross-disciplinary state-of-the-art review for the sake of im-
proving communication and collaboration. We further seek to 
engage and mobilize the expertise of the international soil sci-
ence, and specifically soil physics, community in advancing the 
science and practice of large-scale soil moisture monitoring. We 
also seek to highlight the pressing need to accelerate the pace of 
progress in the area of using large-scale soil moisture observations 
for advanced Earth systems monitoring, modeling, and forecast-
ing applications. Our objectives are (i) to succinctly review the 
state of the art in large-scale soil moisture monitoring and (ii) to 
identify some critical needs for research to optimize the use of 
the increasingly available soil moisture data.

This review does not aim to be comprehensive. Rather we 
have selected specific topics that are illustrative of the opportu-
nities and challenges ahead. This review is organized into four 
primary sections: (i) emerging in situ and proximal sensing tech-
niques, (ii) dedicated soil moisture remote sensing missions, (iii) 
soil moisture monitoring networks, and (iv) applications of large-
scale soil moisture measurements. In this context, in situ tech-
niques are those using sensors embedded in the soil and proximal 
techniques are those using sensors that are in close proximity to 
the soil but not embedded in it. Some observations regarding the 
primary challenges and opportunities for large-scale soil mois-
ture monitoring are provided at the end of the review.

Emerging In Situ and Proximal 
Sensing Techniques
Soil Moisture Monitoring Using Cosmic-Ray Neutrons

Area-average soil moisture can be measured in the field us-
ing cosmic-ray neutron background radiation, whose intensity in 
the air above the land surface depends primarily on soil mois-
ture. The cosmic-ray probe integrates soil moisture over an area 
hundreds of meters in diameter, something that would require 
an entire network of point measurement devices. Measurements 
can be made using stationary probes, which provide an hourly 
time series of soil moisture, or mobile probes, which provide 
snapshots in time over an area or along a line.

Cosmic-ray protons that impinge on the top of the atmo-
sphere create secondary neutrons that in turn produce additional 
neutrons, thus forming a self-propagating nucleonic cascade 
(Simpson, 2000; Desilets and Zreda, 2001). As the secondary 
neutrons travel through the atmosphere and then through the top 

few meters of the biosphere, hydrosphere, and lithosphere, fast 
neutrons are created (Desilets et al., 2010). Because fast neutrons 
are strongly moderated by H present in the environment (Zreda 
et al., 2008, 2012), their measured intensities reflect variations in 
the soil moisture (Zreda et al., 2008) and other H present at and 
near the Earth’s surface (Zreda et al., 2012; Franz et al., 2013).

The process of neutron moderation depends on three factors 
that together define the neutron stopping power of a material 
(Zreda et al., 2012): (i) the elemental scattering cross-section or 
probability of scattering; H has a high probability of scattering a 
neutron; (ii) the logarithmic decrement of energy per collision, 
which characterizes how efficient each collision is; H is by far 
the most efficient element; and (iii) the number of atoms of an 
element per unit mass of material, which is proportional to the 
concentration of the element and to the inverse of its mass num-
ber. Because of the low atomic mass of H and the abundance of 
water in soils, H, next to O and Si, makes up a significant fraction 
of all the atoms in many soils. The extraordinarily high stopping 
power of H makes the cosmic-ray soil moisture method work.

The fast neutrons that are produced in air and soil travel 
in all directions within and between the air and soil, and in this 
way an equilibrium concentration of neutrons is established. The 
equilibrium is shifted in response to changes in the H content 
of the media, which in practice means changes in the amount of 
water on or in the soil. Adding water to the soil results in more 
efficient moderation of neutrons by the soil, causing a decrease in 
the fast neutron intensity above the soil surface. Removing wa-
ter from the soil has the opposite effect. Thus, by measuring the 
fast neutron intensity in the air, the moisture content of the soil 
can be inferred, for example using the equation of Desilets et al. 
(2010), which is plotted in Fig. 1:
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where q is the neutron-derived moisture content, N is the mea-
sured neutron intensity, N0 is the neutron intensity in air above a 
dry soil (this is a calibration parameter obtained from independent 
in situ soil moisture data), and a0, a1, and a2 are fitted constants 
that define the shape of the calibration function. Neutron trans-
port modeling shows that the shape of the calibration function is 
similar for different chemical compositions of soil and different 
soil textures (Zreda et al., 2008; Desilets et al., 2010) and in the 
presence of H pools other than pore water, for example vegetation 
or water vapor (Franz et al., 2013; Rosolem et al., 2013). Therefore, 
the same function can be used under different field conditions 
once corrections are made for all pools of H (Franz et al., 2013).

The probe senses all H present within the distance that fast neu-
trons can travel in soils, water, air, and other materials near the land sur-
face. That distance varies with the chemical composition and density 
of the material, from centimeters in water through decimeters in soils 
to hectometers in air. The support volume can be visualized as a hemi-
sphere above the soil surface placed on top of a cylinder in the soil (Fig. 
2). For soil moisture measurements, the diameter and height of the 
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cylinder are important. The horizontal footprint, which is defined as 
the area around the probe from which 86% (1 − e−2) of counted neu-
trons arise, is a circle with a diameter of 660 m at sea level (Zreda et al., 
2008). It decreases slightly with increasing soil moisture content and 
with increasing atmospheric water vapor content, and it increases with 
decreasing air density (decreasing atmospheric pressure or increasing 
altitude) (Zreda et al., 2012). The horizontal footprint has been veri-
fied by field measurements (Zweck et al., 2011).

The effective depth of measurement, which is defined as the 
thickness of soil from which 86% (1 − e−2) of counted neutrons 
arise, depends strongly on soil moisture (Zreda et al., 2008). It de-
creases nonlinearly from about 70 cm in soils with no water to about 
12 cm in saturated soils and is independent of the air density. The ef-
fective depth of measurement decreases with increasing H in other 
reservoirs, such as lattice water, soil organic matter, or vegetation. 
The decrease in the vertical support volume is more significant at the 
dry end (on the order of 10 cm) than at the wet end (on the order of 
1 cm). The vertical footprint has not been verified empirically.

Neutrons react with any H present near the Earth’s surface. 
Therefore, the measured neutron intensity reflects the total res-
ervoir of neutrons present within the sensing distance of the 
probe (Fig. 2), and hence the probe can be viewed as the total 
surface moisture probe. The greater the concentration of H, the 
greater is its impact on the neutron intensity. Large near-surface 
reservoirs of H, roughly in order of decreasing size, are (i) surface 
water (including snow), (ii) soils, (iii) lattice water and water in 
soil organic matter; (iv) vegetation, and (v) atmospheric water 
vapor. Because the neutron signal integrates all these factors, iso-
lation of one of these components, for example soil moisture, re-
quires that the others be (i) constant in time, (ii) if not constant, 
assessed independently, or (iii) negligibly small. In addition, the 
support volume (or the measurement volume) will be affected by 
these other sources of H.

Calibration requires simultaneous measurements of area-av-
erage soil moisture (q) and neutron intensity (N), and solving Eq. 
[1] for the calibration parameter N0. Area-average soil moisture 
representative of the cosmic-ray footprint is obtained by collecting 
numerous soil samples around the cosmic-ray probe and measur-
ing the moisture content by the oven-drying method (Zreda et 
al., 2012); other methods, such as TDR, can be used as well. The 
measured neutron intensities must be corrected for atmospheric 
water vapor and pressure variations. Soil samples must be analyzed 
for their chemical composition to correct the calibration function 
for any additional water in mineral grains (lattice water) and in the 

organic matter present in the soil (Zreda et al., 2012). 
The presence of that extra water shifts the position 
of the calibration point to the left on the calibration 
function (Fig. 1), which results in a steeper curve and 
thus in reduced sensitivity of neutrons to changes in 
soil moisture. Other sources of water have a similar 
effect on the calibration function.

The measurement precision of soil moisture 
determination is due to neutron-counting statistics. 
The counts follow the Poisson distribution (Knoll, 
2000) in which, for the total number of counts, N, 
the standard deviation is N0.5. Thus, more counts 
produce better precision (i.e., a lower coefficient 
of variation), provided that the neutron intensity 
remains stationary during the counting time. High 
counting rates are expected under the following 
conditions: (i) high altitude and high latitude, be-
cause the incoming cosmic-ray intensity, which is 

Fig. 1. Response function for cosmic-ray probe for soils with pore 
water only (solid black line) and those with pore water and other 
water, such as lattice and organic matter (dashed black line); N is the 
measured neutron intensity and N0 is a calibration parameter repre-
senting the neutron intensity above dry soil. The presence of other 
water shifts the line horizontally from Point A to B and A¢ to B¢, and 
the new line is steeper than the original line for the same moisture 
range (B-B¢ vs. A-A¢). Section B-B¢ can be placed on the original line 
by translating it up to fall on section A¢-A². Thus, accounting for addi-
tional (non-pore) water does not require a new response function but 
merely a translation along the original function by the amount equal 
to that non-pore-water component.

Fig. 2. Sensing volume of the cosmic-ray probe comprises a hemisphere in air (of ra-
dius R) and a cylinder in soil (of height D). All hydrogen within the sensing volume is 
reflected in the measured neutron intensity. The horizontal footprint, R, depends on 
air properties: mainly density and water vapor content. The vertical footprint depends 
on soil properties: mainly bulk density and total hydrogen content (pore water, lattice 
water, and organic matter water).
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the precursor to fast neutrons, increases with both (Desilets and 
Zreda, 2003; Desilets et al., 2006); (ii) dry soil, because of the in-
verse relation between soil moisture and neutron intensity (Fig. 
1); (iii) dry atmosphere, because of the inverse relation between 
atmospheric moisture and neutron intensity (Rosolem et al., 
2013); (iv) no vegetation; and (v) low lattice water and organic 
matter content of the soil. The opposite conditions will result in 
lower counting rates and poorer precision.

The accuracy of soil moisture determination depends on a 
few factors related to calibration and the presence of other pools 
of H within the cosmic-ray probe support volume. The calibra-
tion uncertainty is due to two factors: (i) the accuracy of the in-
dependent measure of area-average soil moisture, which is usually 
<0.01 m3 m−3; and (ii) the accuracy of the neutron count rate at 
the time of calibration, which is usually around 2%. (These calibra-
tion data sets can be viewed at cosmos.hwr.arizona.edu.) If these 
were the only contributing factors, the accuracy would be better 
than 0.01 m3 m−3. But there are a few complicating factors that 
may lead to an increase in the uncertainty. They include atmo-
spheric water vapor, infiltration fronts, changing horizontal corre-
lation scale of soil moisture, variable vegetation, and variations in 
the incoming cosmic-ray intensity. Corrections have been devel-
oped for these factors, but their contributions to the overall uncer-
tainty of soil moisture determination have not been assessed rigor-
ously. At a desert site near Tucson, AZ, Franz et al. (2012) found 
a root mean square error (RMSE) of 0.017 m3 m−3 between the 
soil moisture estimates from a well-calibrated cosmic-ray probe 
and the depth-weighted soil moisture average from a network of 
point-scale sensors distributed across the probe footprint.

Cosmic-ray soil moisture probes are used as stationary or 
roving devices. Stationary probes are installed above the land sur-
face to measure and transmit neutron intensity and ancillary data 
at user-prescribed time intervals (Zreda et al., 2012). These mea-
surements are then used, together with cosmic-ray background 
intensity data, to compute soil moisture. A network of stationary 
probes, called COSMOS, has been installed in the United States, 
with the main aim to provide area-average soil moisture data for 
atmospheric applications (Zreda et al., 2012). Data are available 
with 1-h latency at http://cosmos.hwr.arizona.edu. Other net-
works or individual probes are being installed in Australia (the 
network named CosmOz), Germany (Rivera Villarreyes et al., 
2011), and elsewhere around the globe.

A mobile version of the cosmic-ray soil moisture probe, 
called COSMOS Rover, is under development. Its main appli-
cation is mapping soil moisture across large areas from a car or 
an aircraft; a backpack version is possible as well. The vehicle-
mounted instrument is approximately 10 times larger than the 
stationary cosmic-ray probe to provide more counts (better sta-
tistics) in a short time as the vehicle progresses along the route. 
The measured neutron intensity is converted to soil moisture 
using the usual calibration equation (Desilets et al., 2010). Tran-
sects (Desilets et al., 2010) or maps (Zreda et al., 2011) of soil 
moisture can be produced within hours or days. Such maps may 

prove useful for many applications, including calibration and 
validation of satellite soil moisture missions like SMOS.

Soil Moisture Monitoring Using Global 
Positioning System Signals

While the cosmic-ray probe utilizes an existing natural “sig-
nal,” the ambient fast neutron intensity, to infer soil moisture, 
new methods utilizing GPS receivers use existing anthropogenic 
signals. The GPS signals follow two types of paths between the 
satellites that transmit GPS signals and the antennas that receive 
them (Fig. 3). Some portions of GPS signals travel directly from 
satellites to antennas. These direct signals are optimal for naviga-
tion and geodetic purposes. Antennas also receive GPS signals 
that reflect off the land surface, referred to as multipath by the 
geodetic community (Georgiadou and Kleusberg, 1988). The 
GPS satellites transmit microwave L-band signals (1.57542 and 
1.22760 GHz) that are optimal for sensing water in the envi-
ronment (Entekhabi et al., 2010). For bare soil conditions, the 
reflection coefficients depend on the permittivity of the soil, sur-
face roughness, and elevation angle of the reflections. Therefore, 
reflected GPS signals can be used to estimate soil moisture, as 
well as other environmental parameters. The GPS antennas and 
receivers can also be mounted on satellites (Lowe et al., 2002) 
or on planes (Katzberg et al., 2005). The data collected by these 
instruments are considered remote sensing observations. Alter-
natively, GPS reflections can also be measured using antennas 
mounted fairly close to the land surface (Larson et al., 2008a; 
Rodriguez-Alvarez et al., 2011a), yielding a proximal sensing 
technique. Ground-based GPS studies use the interference of the 
direct and reflected GPS signals, and thus the method is often 
called GPS interferometric reflectometry (GPS-IR).

Fig. 3. Geometry of a multipath signal, for antenna height (H0) and satel-
lite elevation angle (E). Black arrows represent the direct signal transmit-
ted from the satellite. The gray arrow is the reflected signal from the 
ground. The solid line represents the gain pattern of the antenna. Dashed 
circles indicate relative power levels of the gain pattern (Reprinted from 
Larson et al., 2008a with permission from Springer–Verlag.).
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For GPS-IR systems, the sensing footprint depends on (i) 
the height of the antenna above the ground and (ii) the range of 
satellite elevation angles used in the analysis. As satellite eleva-
tion angle increases, the portion of the ground that yields specu-
lar (i.e., mirror-like) reflections both shrinks and moves closer to 
the antenna. For the case of a typical geodetic antenna height of 
2 m, the center of the area sensed varies from 25 m at an elevation 
angle of 5° to 5 m at an elevation angle of 30°. Larger sampling 
areas can be achieved by raising the antenna to heights of ~100 
m, above which observations are complicated by the GPS code 
lengths (Rodriguez-Alvarez et al., 2011a). Because GPS is a con-
stellation of >30 satellites, different GPS satellites rise and set 
above a GPS soil moisture site throughout the day. These reflec-
tions are measured from different azimuths depending on the or-
bital characteristics of each satellite. For the best sites, more than 
60 soil moisture estimates can be made per day, so the soil mois-
ture data estimated from GPS reflections should be considered 
as daily in temporal frequency, once it is averaged across an area 
of ~1000 m2 for antenna heights of 2 m (Larson et al., 2008b).

Two methods of GPS soil moisture sensing have been devel-
oped. The first is based on using GPS instruments designed for 
geodesists and surveyors. These GPS instruments traditionally mea-
sure the distance between the satellites and antenna to estimate posi-
tion; however, these GPS instruments also measure signal power, or 
the signal to noise ratio (SNR). Embedded on the direct signal effect 
are interference fringes caused by the reflected signal being in or out 
of phase with respect to the direct signal. The SNR frequency is pri-
marily driven by the height of the antenna above the ground. As the 
permittivity of the soil changes, the amplitude, phase, and frequency 
of the SNR interferogram varies (Larson et al., 2010; Zavorotny et 
al., 2010). Of the three parameters, the phase of the SNR interfero-
gram is the most useful for estimating soil moisture.

Chew et al. (2013) demonstrated theoretically that phase 
varies linearly with surface soil moisture. For the soils described 
by Hallikainen et al. (1985), the slope of this relationship does 
not vary with soil type. For most conditions, phase provides a 
good estimate of average soil moisture in the top 5 cm. The ex-
ception is when very wet soil overlies dry soil, for example im-
mediately following short-duration rainstorms when the wet-
ting front has not propagated to ~5 cm (Larson et al., 2010). 
Estimates of soil moisture from phase have been compared with 
in situ soil moisture measurements (Fig. 4). At grass-dominated 
sites with relatively low vegetation water content (<0.5 kg m−2), 
the SNR phase varies linearly with in situ soil moisture (r2 > 
0.76) (Larson et al., 2010), consistent with the theoretical analy-
sis by Chew et al. (2013). The vegetation at these sites is typical of 
many rangeland areas in the western United States. A SNR inter-
ferogram is also affected by higher water content vegetation, for 
example that which exists in irrigated agricultural fields (Small et 
al., 2010). Methods are being developed to retrieve surface soil 
moisture from SNR interferograms under these conditions.

One advantage to using geodetic GPS equipment to measure 
soil moisture is that existing geodetic networks can provide much 
needed hydrologic information. The National Science Foundation’s 
Plate Boundary Observatory network has >1100 stations with effec-
tively identical GPS instrumentation. Many of the stations are located 
amid complex topography, which does not facilitate estimation of soil 
moisture via GPS-IR. However, soil moisture is being estimated at 59 
stations with relatively simple topography. The data are updated daily 
and are available at http://xenon.colorado.edu/portal/.

A second GPS soil moisture sensing method is also under de-
velopment (Rodriguez-Alvarez et al., 2009). Similar to the approach 
of Larson et al. (2008a), this system measures the interference pat-
tern resulting from the combination of direct and reflected GPS 

signals. A dual-polarization antenna measures 
the power of the vertically and horizontally po-
larized signals separately, which is not possible 
using standard geodetic instrumentation. The 
satellite elevation angle at which the reflectivity 
of the vertically polarized signal approaches zero, 
i.e., the Brewster angle, varies with soil moisture 
(Rodriguez-Alvarez et al., 2011a). The existence 
of this Brewster angle yields a notch in the inter-
ference pattern. The position of the notch is then 
used to infer soil moisture.

Over a bare soil field, this technique yielded 
10 soil moisture estimates during period of about 
50 d; they show good agreement with those 
measured in situ at a depth of 5 cm (RMSE 
< 0.03 m3 m−3) (Rodriguez-Alvarez et al., 2009). 
A vegetation canopy introduces additional notch-
es to the observed interference pattern. The posi-
tion and amplitude of these notches can be used 
to infer both vegetation height and soil moisture. 
This approach yielded excellent estimates of 
corn (Zea mays L.) height throughout a grow-

Fig. 4. Soil volumetric water content measured by water content reflectometers (WCR) at 
2.5-cm depth (grey areas shows range from five probes), soil water content estimated by GPS–
interferometric reflectometry (circles), and daily precipitation totals (bars) from a site near 
Marshall, CO (adapted from Larson et al., 2010).
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ing season (RMSE = 6.3 cm) (Rodriguez-Alvarez et al., 2011b). Even 
beneath a 3-m-tall corn canopy, soil moisture estimates typically dif-
fered by <0.04 m3 m−3 from those measured with in situ probes at 
5 cm. The main difference between these two techniques is that the 
approach of Larson et al. (2008a) uses commercially available geodetic 
instrumentation—which typically already exists and can be simulta-
neously used to measure position. The approach of Rodriguez-Alvarez 
et al. (2009) uses a system specifically designed for environmental sens-
ing, but it is not yet commercially available.

Soil Moisture Monitoring Using Distributed 
Temperature Sensing

Much as the Larson et al. (2008a) GPS-IR method repurposes 
commercially available GPS receivers to monitor soil moisture, other 
researchers have sought to develop new soil moisture monitoring 
methods using commercially available DTS systems. In a DTS system, 
an optical instrument is used to observe temperature along a contin-
uum of points within an attached optical fiber cable, typically by the 
principle of Raman scattering (Selker et al., 2006). The spatial location 
corresponding to each temperature measurement is determined based 
on the travel time of light in the fiber in a manner analogous to TDR. 
Weiss (2003) pioneered the use of DTS systems for soil moisture 
monitoring by successfully demonstrating the potential use of fiber 
optics to detect the presence of moisture in a landfill cover constructed 
from sandy loam soil. A 120-V generator supplied current to the stain-
less steel sheath of a buried optical fiber cable for ~626 s at a rate of 
18.7 W m−1, and the corresponding spatially variable temperature rise 
of the cable was observed at 40-s temporal resolution and 1-m spatial 
resolution. Analysis of the temperature rise data using the single-probe 
method (Carslaw and Jaeger, 1959) resulted in satisfactory estimates 
of the spatial variability of soil thermal conductivity along the cable, 
which in turn reflected the imposed 
spatial variability of soil moisture. The 
temperature uncertainty achieved was 
~0.55°C, however, and Weiss (2003) 
concluded that without improvements 
in the SNR, the system would not be 
able to resolve small changes in soil 
moisture >0.06 m3 m−3 for the sandy 
loam soil used in that study.

The potential of using passive 
(unheated) DTS methods for soil 
moisture estimation was explored 
by Steele-Dunne et al. (2010). Opti-
cal fiber cable was installed in a tube 
on the soil surface and at depths of 
8 and 10 cm. The soil texture was 
loamy sand, and the vegetation 
cover was sparse grass. With tem-
peratures from the upper and lower 
cables as time-dependent boundary 
conditions, the temperature at the 
middle cable was modeled by nu-
merical solution of the one-dimen-

sional heat conduction equation. A numerical search routine 
was used to find the thermal diffusivity that produced the best 
agreement between the simulated and observed temperatures at 
the 8-cm depth. The results demonstrated that the passive DTS 
system could detect temporal changes in thermal diffusivity asso-
ciated with rainfall events, but the accuracy of the diffusivity esti-
mates was hindered by uncertainties about the exact cable depths 
and spacings. Furthermore, deriving soil moisture estimates was 
complicated by uncertainty and nonuniqueness in the diffusiv-
ity–soil moisture relationship.

Sayde et al. (2010) modified the active DTS approach of 
Weiss (2003) by interpreting the temperature rise data in terms 
of cumulative temperature increase, i.e., the integral of the tem-
perature rise from the beginning of heating to some specified 
time limit. Based on a laboratory sand column experiment with 
2-min, 20 W m−1 heat pulses, they developed an empirical cali-
bration function that fit the observed cumulative temperature 
increase (0–120 s) vs. soil moisture data. Based on that function 
and the observed uncertainty in the cumulative temperature in-
crease data, the uncertainty in the soil moisture estimates would 
increase approximately linearly from 0.001 m3 m−3 when the soil 
moisture is 0.05 m3 m−3 to 0.046 m3 m−3 when the soil moisture 
is 0.41 m3 m−3. Gil-Rodríguez et al. (2013) used the approach 
of Sayde et al. (2010) to satisfactorily monitor the dimensions 
and evolution of a wetted bulb during infiltration beneath a drip 
emitter in a laboratory column of sandy loam soil.

Striegl and Loheide (2012) used an active DTS approach 
to monitor the spatial and temporal dynamics of soil moisture 
along a 130-m transect associated with a wetland reconstruc-
tion project (Fig. 5). They used a 10-min, 3 W m−1 heat pulse, 
a lower heating rate than used in previous active DTS stud-

Fig. 5. (a) Location of study site used by Striegl and Loheide (2012), (b) aerial photo of active distributed 
temperature sensing (DTS/DqS) transect with three independent soil moisture (q) monitoring stations, and 
(c) schematic diagram of active DTS system components (Reprinted from Groundwater with permission of 
the National Ground Water Association. Copyright 2012; Striegl and Loheide, 2012).
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ies. They followed Sayde et al. (2010) in adopting a primar-
ily empirical calibration approach, but rather than cumulative 
temperature increase, they related soil moisture to the average 
temperature rise observed from 380 to 580 s after the onset of 
heating. A calibration function was developed by relating the 
observed temperature rise data to independent soil moisture 
measurements at three points along the transect, and the re-

sulting function had a RMSE of 0.016 m3 m−3 for soil mois-
ture <0.31 m3 m−3 but a RMSE of 0.05 m3 m−3 for wetter 
conditions. Their system successfully monitored the field-scale 
spatiotemporal dynamics of soil moisture at 2-m and 4-h reso-
lution during a period of about 60 d consisting of marked wet-
ting and drying cycles (Fig. 6).

The passive and active DTS methods for monitoring soil mois-
ture offer the potential for unmatched 
spatial resolution (<1 m) in long-term 
soil moisture monitoring on field-scale 
(>100-m) transects. These methods may, 
in the near future, greatly impact our 
understanding of the fine-scale spatio-
temporal structure of soil moisture and 
shed new light on the factors influencing 
that structure. Thus far, the active DTS 
methods have shown more promise than 
passive DTS, but more sophisticated data 
assimilation approaches for interpreting 
passive DTS data are in development. 
The active DTS method is still in its in-
fancy, and many key issues remain to be 
addressed. None of the active DTS meth-
ods developed to date involve spatial vari-
ability in the soil moisture calibration 
function, so heterogeneity in soil texture 
and bulk density could give rise to appre-
ciable uncertainties in field settings. Field 
installation of the optical fiber cables at 
the desired depths with good soil con-
tact and minimal soil disturbance is also 
a significant challenge. Custom-designed 
cable plows (Steele-Dunne et al., 2010) 
and commercial vibratory plows (Striegl 
and Loheide, 2012) have been used with 
some success. The active DTS methods 
have demonstrated good precision for 
low to moderate soil moisture levels, but 
further improvements in measurement 
precision are needed for wet conditions. 
Obtaining good-quality temperature 
measurements using a DTS instrument 
in the field requires that thermally stable 
calibration baths be included in the sys-
tem design. The instrument itself must 
also be in a thermally stable environment 
because sizeable errors can result from 
sudden changes in the instrument tem-
perature (Striegl and Loheide, 2012). The 
measurement principles behind DTS 

were discussed in more detail by Selker et 
al. (2006), and practical aspects of DTS, 
including key limitations and uncertain-
ties, were described by Tyler et al. (2009).

Fig. 6. (a) Time series (x axis) of 4-h rainfall totals and distributed temperature sensing (DTS/DqS) 
measured average temperature rise 8 min after heating began for each 2-m interval along a 130-
m cable transect, (b) time series of estimated soil moisture values based on the active DTS data 
from each 2-m interval along the cable, and (c) a plot of active DTS soil moisture estimates and 
independent soil moisture estimates vs. cable position on 25 Oct. 2010 at 1600 h (Reprinted from 
Groundwater with permission of the National Ground Water Association. Copyright 2012; Striegl 
and Loheide, 2012)..
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Dedicated Soil Moisture Remote 
Sensing Missions

Remote sensing approaches for soil moisture monitor-
ing have been investigated since the 1970s, although the first 
dedicated soil moisture mission, SMOS, was not launched until 
2009. However, soil moisture estimates are also being retrieved 
from satellite instruments not specifically designed for sensing 
soil moisture, most notably from microwave sensors operating 
at suboptimal frequencies. The Advanced Microwave Scanning 
Radiometer for the Earth Observing System (AMSR-E) instru-
ment was carried into orbit aboard the NASA Aqua satellite in 
2002 and provided passive measurements at six dual-polarized 
frequencies until October 2011, when a problem with the rota-
tion of the antenna ended the data stream (Njoku et al., 2003). 
Several different retrieval algorithms have been developed to 
retrieve soil moisture from the lowest two frequencies (6.9 and 
10.6 GHz) observed by AMSR-E (e.g., Owe et al., 2001; Njoku 
et al., 2003). Soil moisture information is also being retrieved 
from active microwave sensors, specifically from ESA’s Advanced 
Scatterometer (ASCAT), which was launched in 2006 aboard 
the MetOp-A meteorological satellite (and before that from 
ASCAT’s predecessors, the European Remote Sensing [ERS] 
satellites) The ERS and ASCAT instruments are C-band radar 
scatterometers designed for measuring wind speed; however, 
soil moisture retrievals have also been developed (Wagner et al., 
1999). An operationally supported, remotely sensed soil mois-
ture product derived from the ASCAT instrument is currently 
available (Wagner et al., 2013). Wagner et al. (2007) provided 
an excellent review of then-existing satellite remote sensing ap-
proaches for soil moisture; here, we focus on two newer satellite 
approaches and one airborne approach.

Soil Moisture and Ocean Salinity Mission
The SMOS mission (Kerr et al., 2010), an Earth Explorer 

Opportunity mission, was launched on 2 Nov. 2009 and con-
cluded its commissioning phase in May 2010. It was developed 
under the leadership of the ESA with the Centre National 
d’Etudes Spatiales (CNES) in France and the Centro para el De-
sarrollo Teccnologico Industrial in Spain.

Microwave radiometry at low frequencies is an established 
technique for estimating surface soil moisture with an adequate 
sensitivity. The choice of L-band as the spectral range in which 
to operate was determined from a large number of studies that 
demonstrated that L-band has high sensitivity to changes in 
moisture in the soil (Schmugge and Jackson, 1994) and salinity 
in the ocean (Lagerloef, 2001). Furthermore, observations at L-
band are less susceptible to attenuation due to the atmosphere or 
vegetation than measurements at higher frequencies ( Jackson and 
Schmugge, 1989, 1991). Also, L-band enables a larger penetra-
tion depth into the surface soil layer than is possible with shorter 
wavelengths (Escorihuela et al., 2010).

Even though the L-band radiometry concept was demon-
strated early by a space experiment (SKYLAB) back in the 1970s, 
no dedicated space mission followed because achieving a ground 

resolution £50 to 60 km required a prohibitive antenna size (³8 
m). The so-called interferometry design, inspired from the very 
large baseline antenna concept (radio astronomy), made such 
a venture possible. Interferometry was first put forward in the 
1980s (Le Vine, 1988) and validated with an airborne prototype 
(Le Vine et al., 1994, 1990). The idea consists of deploying an ar-
ray of small receivers distributed along a structure that folds for 
launch, then unfolds in orbit. This approach enables reconstruc-
tion of a brightness temperature (TB) field with a resolution cor-
responding to the spacing between the outermost receivers. The 
two-dimensional interferometer allows measuring TB at several 
incidence angles with full polarization. Such an instrument in-
stantaneously records a whole scene; as the satellite moves, a given 
point within the two-dimensional field of view is observed from 
different view angles. The series of independent measurements al-
lows retrieving surface parameters with much improved accuracy.

The baseline SMOS payload is thus an L-band (1.413 GHz, 
21 cm, located within the protected 1400–1427 MHz band) two-
dimensional interferometric radiometer designed to provide accu-
rate soil moisture data with moderate spatial resolution. The radi-
ometer is Y-shaped, with three 4.5-m arms, as shown in Fig. 7. The 
SMOS is on a sun-synchronous (0600 h ascending) circular orbit 
and measures the TB emitted from the Earth at L-band across a 
range of incidence angles (0–55°) across a swath of approximately 
1000 km with a spatial resolution of 35 to 50 km (average is 43 
km) and a maximum revisit time of 3 d for both ascending and 

Fig. 7. Artist’s view of the Soil Moisture and Ocean Salinity (SMOS) satel-
lite (courtesy of Centre d’Etudes Spatiales de la BIOsphere, [CESBIO]).
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descending passes (Kerr et al., 2001, 2010). A retrieval algorithm 
incorporating an L-band microwave emission forward model is 
applied to the TB data to estimate soil moisture (Kerr et al., 2012).

The SMOS data quality was sufficient to allow the produc-
tion—from an interferometer—of prototype global surface soil 
moisture maps within 1 yr after launch. It was the first time ever 
that such maps had been obtained. Initially, the accuracy was rela-
tively poor and many retrievals were not satisfactory. The data were 
much impaired by radio frequency interference (RFI), leading to 
degraded measurements in several areas including parts of Europe 
and China (Oliva et al., 2012). Actions have since been taken by 
ESA and CNES to reduce the RFI. Specific RFI sources are now 
identified and their locations are provided to ESA personnel who 
interact directly with the appropriate national agencies. These ef-
forts have resulted in >215 powerful and persistent RFI sources 
disappearing, including the U.S. Defense Early Warning System 
in northern Canada and many sources in Europe. Unfortunately, 
the remaining number of sources in some countries is large.

While RFI reduction and retrieval algorithm improve-
ments were ongoing, efforts to validate the SMOS soil moisture 
retrievals began. In one of the first SMOS validation studies, 
locally calibrated relationships between surface soil moisture 
and microwave TB allowed estimation of surface soil moisture 
from SMOS TB data with RMSE values ranging from 0.03 to 
0.12 m3 m−3 when compared with the 5-cm soil moisture data 
from 11 stations of the SMOSMANIA in situ network in France 
(Albergel et al., 2011). A subsequent study using 16 stations in 
the SMOSMANIA network and a different SMOS soil mois-
ture retrieval produced RMSE values ranging from 0.03 to 
0.08 m3 m−3 (Parrens et al., 2012). Across four in situ networks 
in the United States that are approximately the size of the SMOS 
footprint, Jackson et al. (2012) found RMSE values for SMOS 
ranging from 0.03 to 0.07 m3 m−3. Collow et al. (2012) evalu-
ated SMOS soil moisture retrievals against in situ soil moisture 
observations in Oklahoma and in the northern United States 
and found a consistent dry bias, with SMOS soil moisture values 
ranging from 0.00 to 0.12 m3 m−3 lower than the in situ data 
from the 5-cm depth. In the northern United States, RFI from 
the Defense Early Warning System contributed to the bias. A 
dry bias for SMOS was also found by Al Bitar et al. (2012) us-
ing data from NRCS SCAN and snow telemetry (SNOTEL) in 
situ networks and by Albergel et al. (2012a) using data from in 
situ stations around the world. Understanding the causes of the 
apparent underestimation of surface soil moisture by SMOS in 
these studies is an important area of ongoing research.

One of the primary challenges in using SMOS soil moisture 
data is that the spatial support volume, roughly 40 km by 40 km 
by 5 cm, is not ideal for some applications. Significant horizon-
tal spatial variability in soil moisture is likely to occur within a 
SMOS footprint. This sub-footprint-scale soil moisture variabil-
ity can significantly influence catchment runoff responses (e.g., 
Zehe et al., 2005) and simulation of latent heat flux in a land sur-
face model (e.g., Alavi et al., 2010; Li and Avissar, 1994). Some 
progress has been made toward deriving accurate soil moisture 

estimates with higher spatial resolution by using SMOS data to-
gether with other data sources. By combining SMOS data with 
data from the Moderate Resolution Imaging Spectroradiometer, 
surface soil moisture estimates with 4-km resolution (Merlin et 
al., 2010) and 1-km resolution (Merlin et al., 2012; Piles et al., 
2011) have been developed. Further work is needed to refine and 
validate these higher resolution surface soil moisture estimates 
and to expand their spatial coverage beyond limited test areas.

The SMOS data are freely available from different sources, 
depending on the type (or level) of data required. Level 1 (TB) and 
Level 2 (ocean salinity over oceans or soil moisture/vegetation 
opacity over land) data are available through the ESA (https://
earth.esa.int/web/guest/missions/esa-operational-eo-missions/
SMOS). Level 3 data consist of composited data for either 1 d 
(i.e., all the Level 2 data of 1 d in the same file), 3 d, 10 d, or a 
particular month and for the globe (either morning or afternoon 
passes) for soil moisture and vegetation opacity. Over oceans the 
sampling is either daily or monthly. Level 3 data are available from 
the Centre Aval De Traitement des Données SMOS through an 
ftp site (ftp://eftp.ifremer.fr/catds/cpdc; write to support@catds.
fr to get access). The implementation of these Level 3 products 
may bring significant improvements, particularly in the vegeta-
tion opacity retrieval using temporal information ( Jacquette et 
al., 2010). Figure 8 shows a typical monthly Level 3 soil mois-
ture product. Note that the SMOS surface soil moisture maps are 
global in extent but contain gaps where no soil moisture retrieval 
is currently possible. These gaps are associated with RFI, steep to-
pography, dense vegetation, snow cover, or frozen soils.

Soil Moisture Active Passive Mission
The NASA Soil Moisture Active Passive (SMAP) mission 

(Entekhabi et al., 2010) is scheduled to launch in October 2014. 
Like SMOS, the SMAP mission will utilize L-band measure-
ments to determine surface soil moisture conditions, but SMAP 
will feature both active and passive L-band instruments, unlike 
SMOS, which relies on passive measurements alone. The SMAP 
measurement objective is to provide frequent, high-resolution 
global maps of near-surface soil moisture and freeze–thaw state. 
These measurements will play a role in improving estimates of 
water, energy, and C fluxes between the land and atmosphere. 
Observations of the timing of freeze–thaw transitions over bo-
real latitudes may help reduce major uncertainties in quantifying 
the global C balance. The SMAP soil moisture mission require-
ment is to provide estimates of soil moisture at 10 km spatial res-
olution in the top 5 cm of soil with an error of no >0.04 m3 m−3 
at 3-d average intervals across the global land area, excluding 
regions of snow and ice, frozen ground, mountainous topogra-
phy, open water, urban areas, and vegetation with water content 
>5 kg m−2 (averaged across the spatial resolution scale). This 
level of performance will enable SMAP to meet the needs of hy-
drometeorology and hydroclimate applications.

The SMAP spacecraft (Fig. 9) will carry two L-band micro-
wave instruments: a non-imaging synthetic aperture radar operat-
ing at 1.26 GHz and a digital radiometer operating at 1.41 GHz. 
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The instruments share a rotating 6-m offset-fed mesh reflector 
antenna that sweeps out a 1000-km-wide swath. The spacecraft 
will operate in a 685-km polar orbit with an 8-d repeating ground 
track. The instrument is designed to provide global maps of the 
soil moisture and freeze–thaw state with a maximum revisit time 
of 3 d using combined active (radar) and passive (radiometer) 
instruments. The radiometer incorporates RFI mitigation fea-
tures to protect against RFI from human-made transmitters. The 
radiometer is designed to provide accurate soil moisture data at 
moderate spatial resolutions (40 km) by measuring microwave 
emission from the surface. The emission is relatively insensi-
tive to surface roughness and vegetation. The radar measures 
backscatter from the surface with high spatial resolution (1–3 
km in high-resolution mode) but is more influenced by rough-
ness and vegetation than the radiometer. The combined radar 
and radiometer measurements are expected to provide soil 
moisture accuracy approaching radiometer-based retrievals 
but with intermediate spatial resolution approaching radar-
based resolutions. Thus, the driving aspects of SMAP’s mea-
surement requirements include simultaneous measurement of 
L-band TB and backscatter with a 3-d revisit and high spatial 
resolution (40 and 3 km, respectively). The combined SMAP 
soil moisture product will be output on a 9-km grid. Signifi-
cant progress has been made toward developing a suitable soil 
moisture retrieval algorithm for merging the SMAP radiom-
eter and radar data (Das et al., 2011).

The planned data products for SMAP are being developed 
by the SMAP project and Science Definition Team and in-

clude: Level 1B and 1C instrument data (calibrated and geolocat-
ed radar backscatter cross-sections and radiometer TB); Level 2 
geophysical retrievals of soil moisture; Level 3 daily composites of 
Level 2 surface soil moisture and freeze–thaw state data; and Lev-
el 4 value-added data products that are based on the assimilation 
of SMAP data into land surface models. The SMAP Level 1 radar 
data products will be archived and made available to the public by 
the Alaska Satellite Facility in Fairbanks, AK, while the Level 1 
radiometer and all higher level products will be made available by 
the National Snow and Ice Data Center in Boulder, CO.

Fig. 8. Monthly soil moisture product (September 2010) (in m3 m−3). Note the wet patches in Argentina and the receding Intertropical Conver-
gence Zone influence in the Sahel. Where topography is too steep, radio frequency interference too important, vegetation too dense (tropical rain 
forest), or soils are frozen or covered by snow, the retrievals are either not attempted or not represented (courtesy of CESBIO).

Fig. 9. Artist’s view of the Soil Moisture Active Passive (SMAP) satellite.
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The Level 4 products will support key SMAP applications and 
address more directly the driving science questions of the SMAP mis-
sion. The SMAP L-band microwave measurements will provide di-
rect sensing of surface soil moisture in the top 5 cm of the soil column; 
however, several of the key applications targeted by SMAP require 
knowledge of root zone soil moisture (RZSM) in the top 1 m of the 
soil column, which is not directly measured by SMAP. The SMAP 
Level 4 data products are designed to fill this gap and provide model-
based estimates of RZSM that are informed by and consistent with as-
similated SMAP surface observations. The Level 4 algorithm will use 
an ensemble Kalman filter to merge SMAP data with soil moisture 
estimates from the NASA Catchment land surface model (Reichle et 
al., 2012). Error estimates for the Level 4 soil moisture product will 
be generated as a byproduct of the data assimilation system. A Level 4 
carbon product will also be produced that utilizes daily soil moisture 
and temperature inputs with ancillary land cover classification and 
vegetation gross primary productivity inputs to compute the net eco-
system exchange (NEE) of CO2 with the atmosphere over northern 
(>45° N) vegetated land areas. The SMAP Level 4 carbon product is 
intended to provide regional mapped measures of NEE and compo-
nent C fluxes that are within the accuracy range of tower-based eddy 
covariance measurement approaches.

Airborne Microwave Observatory of Subcanopy and 
Subsurface Mission

Current estimates of NEE at regional and continental scales 
contain such important uncertainties that among the 11 or so 
models tested there could be differences of 100% or more, and 
it is not always clear whether the North American ecosystem is 
a net sink or source for C (Denning et al., 2005; Friedlingstein 
et al., 2006). Root zone soil moisture is widely accepted to have 
a first-order effect on NEE (e.g., Suyker et al.,2003), yet RZSM 
measurements are not often available with the spatial or tempo-
ral extent necessary for input into regional- or continental-scale 
NEE models. Unlike the L-band missions, SMOS and SMAP, 
which measure surface soil moisture, the Airborne Microwave 
Observatory of Subcanopy and Subsurface (AirMOSS) mission 
is designed to measure RZSM directly. The hypothesis of the 
NASA-funded AirMOSS project is that integrating spatially and 
temporally resolved observations of RZSM into ecosystem dy-
namics models can significantly reduce the uncertainty of NEE 
estimates and C balance estimates.

The AirMOSS plan is to provide measurements to estimate 
RZSM using an ultra-high-frequency (UHF, also referred to 
as P-band) airborne radar over representative sites of the nine 
major North American biomes (Fig. 10). These include boreal 

Fig. 10. Nine Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) flux sites covering the major distribution of vegetation 
types in North American biomes(courtesy of NASA/JPL-Caltech).
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forest (Biome 1), temperate grassland and savanna shrublands 
(Biome 5), temperate broadleaf and mixed forest (Biome 2), 
temperate conifer forest east (Biome 3), temperate conifer for-
est west (Biome 4), Mediterranean woodlands and shrublands 
(Biome 6), arid and xeric shrublands (Biome 7), tropical and 
subtropical dry forest (Biome 8), and tropical and subtropical 
moist forest (Biome 9). These radar observations will be used to 
retrieve RZSM, which along with other ancillary data, such as 
topography, land cover, and various in situ flux and soil mois-
ture observations, will provide the first comprehensive data set 
for understanding the processes that control regional C and 
water fluxes. The public access web site for the AirMOSS proj-
ect is http://airmoss.jpl.nasa.gov/.

The airborne P-band radar system, flown on a NASA Gulf-
stream III aircraft, has a flight configuration over the experimen-
tal sites of typically 100 by 25 km made up of four flight lines 
(Fig. 11). This represents an intermediate footprint between the 
flux tower observations (on the order of 1 km) and regional- to 
continental-scale model simulations. Each AirMOSS flux site 
also has a hydrologic modeling domain of on the order of 100 by 
100 km that will be populated with the corresponding ancillary 
data sets to allow flexibility in the flight line design. The hydro-
logic simulation domain is determined based on maximizing the 
overlap of full watersheds with the actual flight domain. These 
watersheds are to be simulated using the fully distributed, physi-
cally based finite element model Penn State Integrated Hydro-
logic Model (PIHM) (Qu and Duffy, 2007; Kumar et al., 2010). 
Carbon dioxide modeling will be performed using the Ecosys-

tem Demography (ED2) model (Moorcroft et al., 2001). Each 
AirMOSS site has flux tower measurements for water vapor and 
CO2 made using an eddy covariance system.

The P-band radar operates in the 420 to 440 MHz fre-
quency range (70 cm), with a longer wavelength than typically 
used in the L-band missions such as SMOS or the upcoming U.S. 
SMAP mission. Previous studies using similar wavelengths have 
shown that RZSM can be computed with an absolute accuracy 
of >0.05 m3 m−3 and a relative accuracy of 0.01 to 0.02 m3 m−3 
through a canopy of up to 120 Mg ha−1 and to soil depths of 50 
to 100 cm, depending on the vegetation and soil water content 
(Moghaddam et al., 2000; Moghaddam, 2009). This P-band ra-
dar system has evolved from the existing Uninhabited Aerial Ve-
hicle Synthetic Aperture Radar subsystems, including the radio 
frequency electronics subsystem, the digital electronics subsys-
tem, the power subsystem, and the differential GPS subsystem. 
The radar backscatter coefficients are available at both 0.5 arc-s 
(approximately 15 m, close to the fundamental spatial resolution 
of the radar) and at 3 arc-s (approximately 100 m), and the re-
trieved RZSM maps will be at 3 arc-s resolution.

The AirMOSS flight operations began in fall of 2012, and 
all sites in North America except the tropical sites (Chamela, 
Mexico, and La Selva, Costa Rica) and the woody savanna site 
(Tonzi Ranch, CA) were flown. A three-band raw data image 
showing the spatial variation of soil moisture over the Metolius, 
OR, site, along with soil roughness and vegetation effects that 
have not yet been removed, is shown in Fig. 12.

Fig. 11. Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) flight path made up of four flight lines, Metolius flux site, 
Cascade Mountains, Oregon.
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Large-Scale Soil Moisture 
Monitoring Networks

Soil moisture networks with spatial extents of >1002 km2 
are well suited for monitoring the meteorological scale of soil 
moisture spatial variability as defined by Vinnikov et al. (1999) 
because atmospheric forcings often exhibit spatial autocorrela-
tion lengths of 100s of kilometers. These large-scale networks are 
also appropriate for studies related to basin-scale hydrology and 
mesoscale meteorology. Numerous smaller networks exist world-
wide with spatial extents <1002 km2, both within and outside 
the United States. For example, the USDA-ARS has developed 
several soil moisture networks to enhance their experimental wa-
tershed program. Locations include the Little Washita in Okla-
homa, Walnut Gulch in Arizona, Reynolds Creek in Idaho, and 
Little River in Georgia ( Jackson et al., 2010). The smaller scale 
networks are often well suited for watershed-scale hydrologic 

studies. A recent surge in the creation of these smaller scale net-
works has been driven by the need to validate soil moisture esti-
mates from satellites such as SMOS and SMAP. A partial list of 
current and planned soil moisture networks with spatial extents 
<1002 km2 was provided by Crow et al. (2012).

Large-Scale Soil Moisture Networks in  
the United States

Large-scale soil moisture networks in the United States are 
currently operating in a variety of configurations at both national 
and state levels (Fig. 13; Table 1). In 1981, the Illinois Water Sur-
vey began a long-term program to monitor soil moisture in situ 
(Hollinger and Isard, 1994; Scott et al., 2010). This network was 
limited by its use of neutron probes, which required significant 
resources to operate and maintain. These neutron probes were 
used to measure soil moisture as frequently as twice a month. 

Fig. 13. In situ soil moisture monitoring sites across the continental United States, including those of the Soil Climate Analysis Network (SCAN), 
Climate Reference Network (CRN), Cosmic-Ray Soil Moisture Observing System (COSMOS), Atmospheric Radiation Measurement–Southern Great 
Plains (ARM-SGP) extended facility network, Oklahoma Mesonet, North Carolina Environment and Climate Observing Network (ECONet), and 
Northeastern High Plains Climate Center.

Fig. 12. Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) three-band (red = HH, green = HV, and blue = VV, where H 
is horizontal polarization and V is vertical polarization) radar image showing the spatial variation in backscattering cross section, corresponding 
to combined variations of soil moisture, soil roughness, and vegetation effects at the Metolius flux site, Cascade Mountains, Oregon. Effects of 
vegetation and surface roughness are removed in higher-order processing steps to produce maps of soil moisture profiles. The volcanic feature 
center of image is Black Butte cinder cone. (Image and description courtesy of Mahta Moghaddam, Univ.  of Southern California. Image available 
from Alaska Satellite Facility AirMOSS image archives: https://www.asf.alaska.edu/program/sdc/data.)
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These stations were collocated with the Illinois Climate Network 
stations as the Water and Atmospheric Resources Monitoring 
Program and ultimately totaled 19 stations with measurements 
from the surface to a depth of 2 m. Beginning in 1998, these sta-
tions were converted to continuously monitor soil moisture us-
ing dielectric sensors (Hydra Probe, Stevens Water Monitoring 
Systems), providing regular statewide estimates of soil moisture.

The next network to develop was in Oklahoma, which has 
become a focal point for mesoscale weather and climate research. 
The Oklahoma Mesonet was launched in 1991 and became fully 
operational in 1994, now consisting of 120 stations, with at least 
one station in each county of Oklahoma (Brock et al., 1995; 
McPherson et al., 2007). Each station hosts a suite of meteorologi-
cal measurements, including air temperature, wind speed and di-
rection, air pressure, precipitation, and soil temperature. These sta-
tions monitor soil matric potential using heat dissipation sensors 
(CS-229, Campbell Scientific) at the 5-, 25-, and 60-cm depths, 
with archived data from the 75-cm depth available for some sites. 
These matric potentials can be converted to soil moisture estimates 
via site- and depth-specific water retention curves (Illston et al., 
2008). Recent improvement in the accuracy of the water retention 
curve parameters has resulted in a field-validated, network-wide 
accuracy for the soil moisture data of ±0.053 m3 m−3 (Scott et 
al., 2013). Also distributed throughout Oklahoma is a network of 
stations belonging to the Southern Great Plains (SGP) site of the 
USDOE Atmospheric Radiation Measurement (ARM) Program 
(Schneider et al., 2003). This network uses the same type of sen-

sor as the Oklahoma Mesonet. This network began in 1996 and 
spanned portions of Oklahoma and Kansas. There are a variety 
of facilities administered by the ARM-SGP site including a large 
central facility, as well as extended and boundary facilities, hosting 
meteorological, surface, and soil profile measurements.

While the Oklahoma Mesonet was being developed, the 
USDA NRCS began a pilot soil moisture–soil temperature 
project to monitor these parameters at the national scale. This 
project developed into the SCAN, which now numbers ap-
proximately 180 stations across the United States (Schaefer et al., 
2007). This network has a standardized depth profile of Hydra 
Probe sensors at 5, 10, 20, 50, and 100 cm. A similar network 
to SCAN is the Climate Reference Network, operated by the 
NOAA National Climatic Data Center (Palecki and Groisman, 
2011). This network commissioned 114 stations to provide a 
national-scale weather and climate monitoring network. Soil 
moisture sensors are being added to these stations based on the 
SCAN configuration (Hydra Probes at 5, 10, 20, 50, and 100 
cm), but three profiles of sensors are installed at each site, provid-
ing data in triplicate for each depth. In addition to soil moisture, 
standard weather variables such as air temperature, solar radia-
tion, precipitation, and wind speed are also collected.

A number of other statewide or large-scale networks have 
been developed since the mid-1990s. In 1998, the High Plains 
Regional Climate Center added soil moisture sensors to 14 Au-
tomated Weather Data Network (AWDN) stations in Nebraska. 
Since then, sensors have been added to other stations so that 

Table 1. Partial list of large-scale (>1002 km2) in situ soil moisture monitoring networks ordered from largest to smallest in areal 
extent. The areas are enumerated by XX2 to indicate the length of one side of a square of the given area; 1002 km2 = 10,000 km2.

Network name Country or state Sites Extent Density† Reference

no. km2 km2 site−1

Inside the United States

  Soil Climate Analysis Network USA 180 31002 2302 Schaefer et al. (2007)

  Climate Reference Network USA 114 31002 2902 Palecki and Groisman (2011)

  Cosmic Ray Soil Moisture Observing System USA 67 31002 3802 Zreda et al. (2012)

  Plate Boundary Observatory Network western USA 59 18002 2402 Larson et al. (2008a)

  Automated Weather Data Network Nebraska 53 4502 622 Hubbard et al. (2009)

  Oklahoma Mesonet Oklahoma 108 4302 412 Illston et al. (2008)

  Automated Environmental Monitoring Network Georgia 81 3902 442 Hoogenboom (1993)

  Water & Atmospheric Resources Monitoring Program Illinois 19 3902 892 Scott et al. (2010)

  Environment and Climate Observing Network North Carolina 37 3702 612 Pan et al. (2012)

  West Texas Mesonet Texas 53 3002 412 Schroeder et al. (2005)

  ARM-SGP extended facilities‡ Oklahoma/Kansas 13 1502 422 Schneider et al. (2003)

Outside the United States

  Tibet-Obs China 46 16002 2302 Su et al. (2011)

   Geological Survey of Finland (GTK) Finland 23 5802 1212 Sutinen et al. (2008)

  OzNet Australia 38 2902 472 Smith et al. (2012)

  SMOSMANIA France 21 2002 442 Calvet et al. (2007)

  Gourma mesoscale site Mali 10 1702 552 de Rosnay et al. (2009)

  Automatic Stations for Soil Hydrology Mongolia 12 1402 402 Yang et al. (2009)

  Central Tibetan Plateau SMTMN§ China 50 1002 142 Zhao et al. (2013)
  Umbria Region Hydrometeorological Network Italy 15 1002 262 www.cfumbria.it

† Density was calculated as the ratio of extent to number of sites.
‡ �The Atmospheric Radiation Measurement–Southern Great Plains (ARM-SGP) extended facility network is being restructured. Values listed are 

projections for summer 2013.
§ Soil Moisture/Temperature Monitoring Network.
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now there are 53 stations throughout the state monitoring soil 
moisture on an hourly basis. These stations monitor soil moisture 
using impedance sensors (Theta Probe ML2x, Delta-T Devices 
Ltd.) at depths of 10, 25, 50 , and 100 cm (Hubbard et al., 2009).

The North Carolina Environment and Climate Observing 
Network (ECONet) has been in operation since 1999, when 
27 stations were instrumented with Decagon ECH2O probes 
(Pan et al., 2012). In 2003, these stations were converted to The-
ta Probe sensors and the network was expanded to 37. Unlike 
most other networks, this network does not have a near-surface 
measurement depth because these data are collected only at the 
20-cm depth. The West Texas Mesonet was initiated by Texas 
Tech University in 1999 and currently monitors soil moisture at 
53 stations at depths of 5, 20, 60, and 75 cm using water con-
tent reflectometers (615, Campbell Scientific) (Schroeder et al., 
2005). In addition, the network monitors wind information, 
atmospheric pressure, solar radiation, soil temperature, precipi-
tation, and leaf wetness. The Georgia Automated Environmen-
tal Monitoring Network began in 1991 (Hoogenboom, 1993) 
and has since grown to include 81 stations. Soil moisture sensors 
have been added to these stations at a depth of 30 cm for the pur-
pose of agricultural and meteorological monitoring. The newest 
large-scale soil moisture networks in the United States are the 
COSMOS and GPS-IR networks described above. Additional 
networks are on the horizon as well, including the National 
Ecological Observatory Network (NEON), which will operate 
study sites in 20 ecoclimatic domains throughout the United 
States in the coming years (Keller et al., 2008).

Large-Scale Soil Moisture Networks Outside  
the United States

In recent years, several large-scale soil moisture monitor-
ing networks have been established outside of the United States, 
serving research purposes, supporting natural hazard forecasting, 
or being an integrative part of meteorological observing systems 
(e.g., Calvet et al., 2007). Table 1 gives an overview of known 
large-scale networks that are currently measuring soil moisture 
on an operational or quasi-operational basis. No active network 
outside the United States has a spatial extent as large as that of the 
U.S. national networks, but several have spatial extents and densi-
ties comparable to the state-level networks in the United States. 
Some networks, such as those in France and Mongolia, were in-
stalled for validating satellite soil moisture missions and thus have 
a setup that allows representation of soil moisture variations as 
accurately as possible at the spatial scale of a satellite footprint.

The networks described in Table 1 have each been designed 
to meet different research and operational objectives, and this 
has resulted in a large variety of measurement setups and tech-
niques, available metadata, data access points, and distribution 
policies. The first action to offer a centralized access point for 
multiple, globally available in situ soil moisture data sets was the 
Global Soil Moisture Data Bank (GSMDB; Robock et al., 2000, 
2005). The GSMDB collected data sets existing at that time but 
did not perform any harmonization of variables or data formats. 

The first international initiative addressing the latter has been 
FLUXNET (Baldocchi et al., 2001), a “network of networks” 
dedicated to monitoring land–atmosphere exchanges of C, en-
ergy, and water. Unfortunately, within FLUXNET soil moisture 
is not measured at all sites, while, more importantly, practical use 
of soil moisture data from FLUXNET is severely hampered by 
restricted accessibility and the large time gap between acquisi-
tion of the data and their availability to the science community.

In 2009, the International Soil Moisture Network (ISMN; 
http://ismn.geo.tuwien.ac.at/) was initiated to overcome the is-
sues of timeliness in data delivery, accessibility, and heterogene-
ity of data (Dorigo et al., 2011a, 2011b). This international ini-
tiative is a result of the coordinated efforts of the Global Energy 
and Water Cycle Experiment in cooperation with the Group of 
Earth Observations and the Committee on Earth Observation 
Satellites to support calibration and validation of soil moisture 
products from remote sensing and land surface models and to 
advance studies on the behavior of soil moisture across space and 
time. The decisive financial incentive was given by ESA, who 
considered the establishment of the ISMN critical for optimiz-
ing the soil moisture products from the SMOS mission.

The ISMN collects and harmonizes ground-based soil mois-
ture data sets from a large variety of individually operating net-
works and makes them available through a centralized data portal. 
Currently, the database contains almost 7000 soil moisture data 
sets from more than 1600 sites, distributed among 40 networks 
worldwide (Fig. 14). Not all the networks are still active. Also, 
the data sets contained in the former GSMDB were harmonized 
and transferred into the ISMN. Recently, several updates of the 
ISMN system were performed to keep up with the increasing data 
amount and traffic and to meet the requirements of advanced us-
ers. Many data sets from operational networks (e.g., SCAN, the 
U.S. Climate Reference Network, and ARM) are now assimilated 
and processed in the ISMN on a fully automated basis in near-
real time. In addition, an enhanced quality control system is being 
implemented (Dorigo et al., 2013) while novel methods are be-
ing explored to obtain objective measures of reliability and spatial 
representativeness of the various sites (Gruber et al., 2013).

Challenges and Opportunities Related to Large-
Scale Soil Moisture Networks

The steadily increasing number of soil moisture monitoring 
stations goes hand in hand with the growing awareness of the role 
of soil moisture in the climate system. Nevertheless, Fig. 14 and 
15 show that the current stations are concentrated geographically 
and mainly represent a limited number of Köppen–Geiger climate 
classes in temperate regions. The number of permanent soil mois-
ture stations is still very limited in the tropics (A category), dry 
areas (Bw classes), and in high-latitude areas (Dfc and E classes). 
Especially in the latter, the hydrologic cycle is not yet well under-
stood, and these regions are expected to be particularly sensitive to 
climate change. Thus, international efforts should concentrate on 
expanding networks in these areas.
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The major challenge, however, is not only to set up new 
networks but also to keep them operational in the future. Be-
cause many networks rely heavily on project funding, their 
continuation is typically only guaranteed for the lifetime of the 
project. Thus, internationally coordinated efforts should focus 
on developing mechanisms for continued financial and logis-
tical support. One such mechanism is the integration of the 
ISMN into the Global Terrestrial Network for Hydrology as 
part of the Global Climate Observing System (2010). Alterna-
tively, the integration of soil moisture monitoring sensors into 
existing operational meteorological stations may increase the 
probability for continued operation.

Another significant challenge for in situ networks is defin-
ing standards for the measurements themselves to enhance the 
consistency among sites. Best practices for sensor calibration, in-
stallation, and in situ validation, as well as data quality control 
procedures and data archiving and retrieval standards, need to be 
developed. The AWDN in Nebraska (Hubbard et al., 2009), the 
Oklahoma Mesonet (Illston et al., 2008), and the ISMN (Dorigo 
et al., 2013) have documented, automated quality control pro-
cedures in place that may prove useful for other networks. The 
Oklahoma Mesonet soil moisture network has also been subject-
ed to in situ validation by soil sampling (Illston et al., 2008; Scott 
et al., 2013), allowing quantitative estimates of the accuracy of the 
soil moisture data. Calibration and validation are two separate 

Fig. 14. Overview of soil moisture stations currently contained in the International Soil Moisture Network (ISMN). Green dots show the stations 
that are still measuring soil moisture, red dots the stations that were imported from the Global Soil Moisture Data Bank.

Fig. 15. Number of stations found within and area covered by the different Köppen-Geiger classes after Peel et al. (2007). For the class legend we 
refer to that publication. (Image credit: Mariette Vreugdenhil.)
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and necessary steps in measurement. Calibration in this context 
means developing a relationship between the sensor output and 
the true soil moisture value. Validation in this context means col-
lecting independent soil moisture data in situ after sensor instal-
lation to quantify the accuracy of the calibrated and installed sen-
sor. Such in situ validation is needed for all networks.

Applications of Large-Scale Soil 
Moisture Measurements
Drought Monitoring

Droughts are typically classified as meteorological, agricul-
tural, or hydrologic (Mishra and Singh, 2010). Meteorological 
drought is indicated by a lack of precipitation over a specified 
region during a particular period of time. Agricultural drought 
occurs when declining soil moisture levels negatively impact 
agricultural production. Some have used the term ecological 
drought to designate similar conditions that reduce primary pro-
ductivity in natural ecosystems (Le Houérou, 1996). These two 
drought concepts are closely related and should perhaps be rep-
resented by the composite term agroecological drought. A third 
common drought classification is hydrologic drought, which is 
a period of inadequate surface and subsurface water resources 
to support established water uses. Soil moisture is most directly 
related to agroecological drought, which is often preceded by 
meteorological drought and comes before hydrologic drought. 
This places soil moisture squarely in the center of the spectrum 
of drought classifications and drought indicators, but soil mois-
ture measurements have been largely neglected in the science and 
practice of drought monitoring to date.

In earlier decades, this deficiency was unavoidable because 
sufficient soil moisture data were simply not available to enable 
their use in operational drought monitoring. That situation be-
gan to change dramatically in the 1990s with the rise of large-
scale soil moisture monitoring networks in the United States 
(Hollinger and Isard, 1994; McPherson et al., 2007; Schaefer et 
al., 2007), a change now spreading around the world. Even more 
recently, global maps of surface soil moisture based on satellite re-
mote sensing have become available, and these could be useful in 
drought monitoring. The primary impediment to the use of soil 
moisture measurements in operational drought monitoring is no 
longer a lack of data but rather a lack of scientific understanding 
regarding how soil moisture measurements quantitatively indi-
cate agroecological drought. Strong and transparent conceptual 
models are needed to link soil moisture measurements with veg-
etation impacts in agricultural and ecological systems.

The first known attempt to use large-scale soil moisture mea-
surements in drought monitoring was the Soil Moisture Index 
(SMI) introduced by Sridhar et al. (2008) based on data from the 
AWDN in Nebraska. Their results demonstrated that continu-
ous soil moisture measurements at the 10-, 25-, 50-, and 100-cm 
depths from 37 stations in Nebraska formed the basis for a strong 
quantitative drought indicator. The SMI was subsequently revised 
by Hunt et al. (2009), who proposed the following relationship:

=− + AWSMI 5 10F 	  [2]

where FAW is the fraction of available water, calculated as
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where q is the volumetric water content at a specified depth, qfc is 
the volumetric water content corresponding to field capacity, and 
qwp is the volumetric water content corresponding to the perma-
nent wilting point. Hunt et al. (2009) calculated the SMI using 
data from sensors at the 10-, 25-, and 50-cm depths and then cal-
culated the average SMI across depths.

The use of FAW as the basis for SMI is substantiated by cur-
rent scientific understanding of plant water stress because water 
stress is more strongly related to the relative amount of plant-avail-
able water in the soil than to the absolute amount of soil moisture 
(Allen et al., 1998). Values of FAW are typically between 0 and 
1; however, both higher and lower values are possible. The scal-
ing relationship in Eq. [2] thus causes SMI values to typically fall 
in the range from −5 to 5. This scaling was chosen to make the 
range of SMI comparable to the range of other drought indicators 
(e.g., Drought Monitor; Svoboda et al., 2002). Although stress 
thresholds vary somewhat with plant species and weather condi-
tions, generally FAW values <0.5 result in water stress (Allen et 
al., 1998). When FAW is 0.5, the SMI value is 0, the transition 
between stressed and unstressed conditions. Again using data from 
the Nebraska AWDN, Hunt et al. (2009) found that the modified 
SMI was effective for identifying drought onset as well as soil re-
charge from rainfall events following significant dry periods.

Recently, the SMI was applied using daily measurements of 
soil moisture in the 0- to 50-cm depth layer from a network of six 
monitoring stations in the Czech Republic (Mozny et al., 2012). 
That study supported the drought intensity scheme proposed by 
Sridhar et al. (2008) in which SMI values lower than −3 signify 
severe or extreme drought. Mozny et al. (2012) related the con-
cept of flash drought to the SMI, specifying that a flash drought 
occurs when SMI values decrease by at least five units during a pe-
riod of 3 wk. Thus, the SMI concept has shown good potential as 
a quantitative drought indicator based on soil moisture measure-
ments, but some key uncertainties remain. The indicator is sensi-
tive to the site- and depth-specific values chosen for qfc and qwp. 
These critical water contents can be estimated from the in situ soil 
moisture time series in some cases (Hunt et al., 2009), measured 
directly in the laboratory, calculated using pedotransfer function 
models (Schaap et al., 2001), or estimated from literature values 
(Sridhar et al., 2008), but best practices for determining these pa-
rameters in the SMI context need to be developed.

Recently, Torres et al. (2013) introduced a method for using 
long-term measurements of the soil water deficit (SWD) from a 
large-scale monitoring network to compute site-specific drought 
probabilities as a function of day of the year. Improved quanti-
fication of seasonal patterns in drought probability may allow 
crop cycles to be better matched with periods when drought is 
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less likely to occur; therefore, yield losses due to drought may be 
reduced. The SWD for each soil layer (D) is defined as

( )fcq q D= −D z 	  [4]

where Dz is the thickness of the soil layer; the SWD is calculated 
by summing D across the desired soil layers. Soil moisture data 
from eight stations of the Oklahoma Mesonet spanning 15 yr 
were used to calculate deficits for the 0- to 10-, 10- to 40-, and 
40- to 80-cm layers. Drought was defined in this context as a pe-
riod when the SWD is sufficient to cause plant water stress, i.e., 
SWD exceeds a predetermined threshold. The threshold was set 
for each site and layer as 0.5TAW, where TAW is the total avail-
able water calculated by substituting qwp for q in Eq. [4]. Values 
of SWD calculated from 0 to 40 cm (SWD40) were similar to 
7-d cumulative atmospheric water deficits (AWD), calculated as 
reference evapotranspiration minus precipitation, during much 
of the spring and fall, but the soil and atmospheric deficits di-
verged in the winter and summer months (Fig. 16).

Historical drought probabilities estimated for each day of 
the year using the SWD data were consistent between depths and 
agreed with general knowledge about the climate of the region (Fig. 
17), while probabilities estimated using AWD data (Purcell et al., 
2003) were substantially lower and inconsistent with general knowl-
edge about the region and with prior drought probability estimates 
in nearby states. Torres et al. (2013) proposed modifications to the 
AWD method, either lowering the AWD threshold used to define 
drought or extending the summation period from 7 to 15 d, both 
of which resulted in drought probability estimates more consistent 
with the estimates from the SWD method. They concluded that the 
new SWD method gave plausible and consistent results when ap-
plied to both the 0- to 40- and 0- to 80-cm soil layers and should be 
utilized when long-term soil moisture data are available.

The first known operational use of large-scale soil mois-
ture measurements for drought monitoring involved not SMI 

or SWD, but a related measure, plant-available water (PAW). 
Plant-available water is defined as
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for soil layers i = 1, …, n of thickness Dzi. In 2012, the Oklaho-
ma Mesonet (McPherson et al., 2007) introduced daily-updated 
PAW maps based on its network of >100 stations monitoring 
soil moisture at standard depths of 5, 25, and 60 cm. These maps 
are intended for use in drought monitoring and show PAW for 
the 0- to 10-cm (4-inch), 0- to 40-cm (16-inch), and 0- to 80-
cm (32-inch) soil layers (www.mesonet.org/index.php/weather/
category/soil_moisture_temperature). The depth units (e.g., 
millimeters or inches) of PAW make it compatible with familiar 
hydrologic measurements such as precipitation and evapotrans-
piration (ET). Figure 18 shows maps of departure from average 
PAW for the 0- to 40-cm (16-inch) soil layer across Oklahoma 
for the months of May 2012 and May 2013. The maps show that 
significantly drier than average PAW conditions prevailed across 
large areas of central and eastern Oklahoma in May 2012, but 
significantly wetter than average PAW conditions covered much 
of the state in May 2013. These soil moisture patterns bear little 
resemblance to U.S. Drought Monitor (Svoboda et al., 2002) 
maps from the same time periods (Fig. 18c and 18d), which sug-
gests that drought conditions were substantially worse in May 
2013 than May 2012 across the entire state. These maps illustrate 
that a drought indicator based on large-scale soil moisture moni-
toring can provide a dramatically different assessment of drought 
severity than the Drought Monitor, which blends information 
from meteorological indicators, streamflow percentiles, a soil 
moisture model, and expert opinion.

These recent developments in the use of soil moisture mea-
surements for drought monitoring are encouraging; however, the 
research needs in this area are significant. As yet, little is known re-

Fig. 16. Water deficit estimation by the atmospheric water defi-
cit (AWD) method and soil water deficit methods for the 0- to 40- 
(SWD40) and 0- to 80-cm depths (SWD80), with corresponding water 
deficit thresholds used for calculating the probability (P) of drought. 
Averages of 15 yr for Hollis, OK (reproduced from Torres et al., 2013).

Fig. 17. Drought probabilities estimated by the atmospheric water defi-
cit (AWD) method and soil water deficit (SWD) methods for the 0- to 
40- (SWD40) and 0- to 80-cm depths (SWD80). Average for 15 yr and 
eight sites in Oklahoma for 1 May through 31 October (reproduced 
from Torres et al., 2013).
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garding how soil moisture-based drought indicators relate to other 
widely accepted drought indicators like the Standardized Precipi-
tation Index (Guttman, 1999) or the Palmer Drought Severity In-
dex (Palmer, 1965). Likewise, we do not know how soil moisture-
based drought indicators are related to actual drought impacts in 
agricultural or ecological systems. Already SMI, SWD, and PAW 
have demonstrated potential as soil moisture-based drought indi-
cators driven by in situ measurements. Other soil moisture-based 

indicators have been proposed on the basis of numerical modeling 
studies. These include the model-based Normalized Soil Mois-
ture index (Peled et al., 2009) and the Soil Moisture Deficit Index 
(Narasimhan and Srinivasan, 2005), neither of which has been 
evaluated using actual soil moisture measurements.

Furthermore, most in situ soil moisture measurements are 
made under grassland vegetation because of problems with estab-
lishing long-term meteorological stations in cropland or forest. 
There is a dearth of research on how to estimate soil moisture under 
contrasting land use–land cover combinations based on in situ ob-
servations under grassland vegetation. This deficiency complicates 
the interpretation of agroecological drought indicators based on in 
situ soil moisture measurements. Clearly, there should be a role for 
satellite remote sensing of soil moisture to assist in overcoming some 
of the deficiencies of drought monitoring by in situ soil moisture ob-
servations. Bolten et al. (2010) showed that AMSR-E surface soil 
moisture retrievals could add significant value to RZSM predictions 
in an operational drought modeling framework. Soil moisture data 
from AMSR-E have also shown potential as part of an integrated 
drought monitoring system for East Africa (Anderson et al., 2012); 
however, there are as yet no operational systems for drought moni-
toring that utilize satellite soil moisture measurements. We antici-
pate a surge in this type of research in the near future.

Meteorological Modeling and Forecasting
Drought provides a clear example of the interaction be-

tween the atmosphere and the land surface, an interaction 
strongly influenced by soil moisture conditions. A schematic of 
atmospheric boundary layer (ABL) interactions with the land 
surface is presented in Fig. 19. Daytime growth of the ABL is 
directly affected by soil and vegetation states and processes, and 

Fig. 19. Schematic of principle atmospheric boundary layer interactions 
with the land surface conditions (modified from Ek and Mahrt, 1994). 
Note that two consecutive negative feedbacks result in a positive feedback.

Fig. 18. Departure from average plant-available water (PAW) for the 0- to 40-cm (16-inch) soil layer across Oklahoma for (a) May 2012 and (b) 
May 2013, and U.S. Drought Monitor maps for Oklahoma for (c) 15 May 2012 and (d) 14 May 2013. The PAW maps were adapted from the 
Oklahoma Mesonet long-term averages maps (www.mesonet.org/index.php/weather/mesonet_averages_maps). The Drought Monitor maps were 
adapted from the U.S. Drought Monitor archives (droughtmonitor.unl.edu/archive.html).
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these processes play a role in partitioning the energy balance, 
which relates net radiation to soil heat flux, sensible heat flux, 
and latent heat flux, i.e., ET. Root zone soil moisture can influ-
ence the ABL by controlling land surface energy and moisture 
fluxes. For example, Basara and Crawford (2002) found that the 
soil water content in the root zone, particularly the 20- to 60-cm 
depth, during the summer was linearly correlated with daytime 
evaporative fraction and daily-maximum values of sensible heat 
flux and latent heat flux on days with strong radiative forcing and 
weak shear in the lower troposphere. Root zone soil moisture 
was also linearly related to key parameters in the ABL such as the 
daily maximum air temperature at 1.5 m.

Numerous large-scale hydrologic–atmospheric–remote sens-
ing experiments have been conducted to better understand the 
soil moisture-moderated interactions of the soil–vegetation sys-
tem with the diurnal ABL. Improved parameterization of general 
circulation models was one of the initial objectives of the experi-
ments. Table 2 gives a concise overview of a few of these experi-
ments, including HAPEX-MOBILHY, which was the first experi-
ment conducted at this scale (André et al., 1986, 1988). Most of 
the experiments listed cover large geographic areas that play sig-
nificant roles in the general circulation system of the planet.

The strong linkage of surface soil moisture and parameteriza-
tion of soil hydraulic processes with the ABL response was demon-
strated by Ek and Cuenca (1994) based on data from the HAPEX-
MOBILHY. This study found that variations in soil hydraulic pro-
cess parameterization could have a clear impact on the simulated 
surface energy budget and ABL development. This impact was 
accentuated for dry to moderate soil moisture conditions with bare 
soils. Ek continued to do considerable work in the area of simulation 
of the ABL and the influence of soil moisture conditions, often us-
ing data from regional experiments such as HAPEX-MOBILHY 
and the Cabauw data set from the Netherlands (Monna and van der 
Vliet, 1987). Data from HAPEX-MOBILHY were used to evalu-
ate the evolution of the relative humidity profile in the ABL (Ek 
and Mahrt,1994). The relationships among canopy conductance, 
root density, soil moisture, and soil heat flux with simulation of the 
ABL using the Cabauw data set were investigated by Ek and Holt-
slag (2004). The ABL simulation evolved from the Oregon State 
University one-dimensional planetary boundary-layer model (OS-
U1DPBL) (Mahrt and Pan, 1984; Pan and 
Mahrt, 1987) to the Coupled Atmospheric 
Boundary Layer–Plant–Soil (CAPS) mod-
el. These models in turn are the basis for the 
Noah land-surface model (Chen and Dud-
hia, 2001; Ek et al., 2003), which plays a ma-
jor role in the medium-range forecast model 
for numerical weather prediction (NWP) at 
the NOAA National Center for Environ-
mental Prediction.

Given its influence on ABL develop-
ment, RZSM can have a strong influence 
on weather forecasts. If not suitably con-
strained, the RZSM in an atmospheric 

model will drift from the true climate, resulting in erroneous 
boundary layer forecasts (Drusch and Viterbo, 2007). Since the 
mid 1990s, many NWP centers have been indirectly constrain-
ing their model soil moisture using methods that minimize the 
errors in measured screen-level (1.5–2.0-m) temperature and hu-
midity (Best et al., 2007; Hess, 2001; Mahfouf, 1991; Mahfouf et 
al., 2009). While this approach reduces boundary layer forecast 
errors, it does not generate realistic soil moisture because the lat-
ter is often adjusted to compensate for model errors unrelated to 
soil moisture (Douville et al., 2000; Drusch and Viterbo, 2007; 
Hess, 2001). Ultimately, a model with inaccurate soil moisture 
cannot accurately describe the atmosphere across the full range 
of forecast lengths produced from NWP models.

Hence, the NWP community has been working toward 
improving model soil moisture by assimilating remotely sensed 
near-surface soil moisture. Near-surface soil moisture is more di-
rectly related to RZSM than screen-level variables, and assimilat-
ing near-surface soil moisture data (0–5 cm) has been shown to 
improve model RZSM (Calvet et al., 1998; Hoeben and Troch, 
2000; Montaldo et al., 2001). Figure 20 compares several experi-
ments constraining model RZSM by assimilating observations of 
near-surface soil moisture and screen-level temperature and rela-
tive humidity, highlighting the fundamental difference between 
these two approaches. These experiments were conducted with 
Météo-France’s NWP land surface model using an extended Kal-
man filter and the AMSR-E Land Parameter Retrieval Model 
near-surface soil moisture data (Owe et al., 2001; for further de-
tails, see Draper et al., 2011).

In general, assimilating the screen-level observations im-
proved the fit between the mean forecast and observed screen-
level variables compared with the open loop; however, the assim-
ilation had a slight negative impact on the fit between the mean 
forecast and observed near-surface soil moisture. In contrast, as-
similating the AMSR-E soil moisture improved the fit between 
the mean forecast and observed near-surface soil moisture while 
degrading the fit between the modeled and observed screen-level 
variables. This result is consistent with previous studies show-
ing that adjusting model soil moisture to improve screen-level 
forecasts does not necessarily improve soil moisture (Douville et 
al., 2000; Drusch and Viterbo, 2007; Seuffert et al., 2004), and 

Table 2. Selected large-scale hydrologic–atmospheric–remote sensing experiments.

Experiment Lead agency Location Climatic regime Observation period†

HAPEX-MOBILHY Météo, France southwest 
France

temperate forest summer, 1986

HAPEX-Sahel Météo, France Niger tropical arid summer, 1992

BOREAS NASA Canada boreal forest spring/fall 1994, 1996

IHOP National Science 
Foundation (NSF)

Kansas, 
Oklahoma, 

Texas

continental 2002

HYMeX Global Energy and 
Water Exchanges 
Project (GEWEX)

Europe Mediterranean 2010–2020 (LOP)
2011–2015 (EOP)

CZO NSF 6 sites varies 2007–current
AirMOSS NASA 7 sites varies 2011–2015

† LOP, long-term observation period; EOP, enhanced observation period.
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conversely, improving the model soil moisture does not necessar-
ily improve atmospheric forecasts (Seuffert et al., 2004). Con-
sequently, in the foreseeable future it is unlikely that remotely 
sensed near-surface soil moisture will be used in NWP in place 
of screen-level observations. Combining the assimilation of both 
observation types, however, can reduce errors in both model 
soil moisture and low-level atmospheric forecasts. For example, 
when both data types were assimilated together (Fig. 20), the fit 
between the model and both observation types was improved, 
although the mean soil moisture improvements were very small 
(see also Seuffert et al., 2004).

Currently, near-surface soil moisture observations are as-
similated operationally at the UK Met Office (UKMO) and 
the European Centre for Medium Range Weather Forecasting 
(ECMWF). While the development of soil moisture assimila-
tion in NWP is motivated by the eventual use of L-band ob-
servations (e.g., SMOS and SMAP), both centers are currently 
assimilating ASCAT Surface Degree of Saturation (SDS) data 
(Bartalis et al., 2007), an operationally supported remotely 
sensed soil moisture product with global coverage. At the 
UKMO, the screen-level observation based soil moisture analy-
sis was amended in July 2010 to also constrain the near-surface 
soil moisture by nudging it with ASCAT SDS data (Dharssi 
et al., 2011). Compared with nudging with only screen-level 
observations, adding the ASCAT data very slightly improved 

near-surface soil moisture forecasts across selected sites in the 
United States while also improving screen-level temperature 
and relative humidity forecasts across the tropics and Australia 
(with neutral impact elsewhere). At the ECMWF, the NWP 
land surface analysis was updated in November 2010 to an ex-
tended Kalman filter based scheme, enabling the assimilation 
of remotely sensed data (de Rosnay et al., 2013; Drusch et al., 
2009). To date the ASCAT data are not being used in their 
weather forecating model but are being assimilated together 
with screen-level observations in an offline land surface analy-
sis system. Including the ASCAT data in this system has had a 
neutral impact on near-surface soil moisture and screen-level 
forecasts (Albergel et al., 2012b; de Rosnay et al., 2013).

The above examples highlight some challenges of land data 
assimilation specific to NWP applications. For example, the com-
putation cost of the assimilation is a major limitation in NWP (de 
Rosnay et al., 2013; Drusch et al., 2009), hence the assimilation 
methods applied must be relatively simple. Further work is re-
quired to improve the land surface analysis schemes used in NWP, 
and in particular to propagate the surface soil moisture informa-
tion into the root zone (not currently achieved by the schemes 
in place at the UKMO or ECMWF). Additionally, Dharssi et al. 
(2011) and de Rosnay et al. (2013) identified the observation bias 
correction strategy, i.e., the method by which satellite-derived 
surface soil moisture values are adjusted to be consistent with the 

Fig. 20. Daily mean for each day in July 2006, averaged across Europe, of the observation minus 6-h forecast of (a) screen-level temperature (K), (b) 
screen-level relative humidity (%), and (c) near-surface soil moisture (m3 m−3), from no assimilation (black solid lines), and assimilation of screen-
level temperature and relative humidity (black dashed lines), Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) 
near-surface soil moisture (gray solid lines), and both (gray dashed lines) experiments. The assimilation was performed with an extended Kalman 
filter using Météo-France’s Interactions between Soil, Biosphere, and Atmosphere (ISBA) land surface model(Reproduced from Draper et al., 2011).
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model used for assimilation, as a likely cause of the limited im-
pact of assimilating the ASCAT data. Bias correction of remotely 
sensed soil moisture is difficult in NWP because the long data re-
cords required to estimate statistics of the model climatology are 
not available from NWP models due to frequent model updates 
and the prohibitive cost of rerunning models.

The greatest challenge faced by soil moisture assimilation in 
NWP, however, is that improving the model soil moisture may not 
immediately improve atmospheric forecasts due to errors in the 
model physics. It is likely that the greatest contribution of using 
remotely sensed near-surface soil moisture observations in NWP 
will be in helping to identify and address these physics errors. Al-
ready, the availability of remotely sensed soil moisture and efforts 
to assimilate those data have stimulated improvements in model-
ing soil moisture processes. For example, in response to discrep-
ancies between modeled and SMOS-observed TB, the ECMWF 
recently improved their bare soil evaporation parameterization, 
resulting in improved model near-surface soil moisture and TB 
(Albergel et al., 2012b). As soil moisture data are used more exten-
sively in NWP models, this should also help to expose and eventu-
ally address other errors in the model surface flux processes.

Ecological Modeling and Forecasting
Ecological modeling is another area that could logically 

benefit from increased availability of large-scale soil moisture 
monitoring. Soil moisture is a key parameter in the control of 

plant growth, soil respiration, and the distribution of plant func-
tional types in terrestrial ecosystems (Blyth et al., 2010; Ren et 
al., 2008; Pan et al., 1998; Neilson, 1995). Plant growth (i.e., 
assimilation of CO2 through photosynthesis) is coupled with 
water loss through transpiration, which is regulated by soil wa-
ter availability (Yang et al., 2011; Sellers et al., 1997; Field et al., 
1995). Decomposition of soil organic C is also sensitive to soil 
moisture content via microbial activity and other processes (Ise 
and Moorcroft, 2006; Xu et al., 2004; Orchard and Cook, 1983). 
Furthermore, temporal and spatial availability of soil moisture 
content constrains the distribution and properties of plant func-
tional types (Bremond et al., 2012; Seneviratne et al., 2010; 
Gerten et al., 2004; Breshears and Barnes, 1999).

A striking example of the interactions between vegetation 
and soil moisture conditions was provided by the Tiger Bush 
sites in the HAPEX-Sahel experiment. The Tiger Bush is made 
up of relatively long and narrow patches of vegetation approxi-
mately 40 m wide separated by nearly cemented patches of bare 
soil approximately 60 m wide, and these sites are characteristic of 
certain regions in the Sahel. One can note in the >3-m-deep pro-
file in Fig. 21 (monitored by neutron probe) that there is limited 
variation in the soil moisture content and only in the upper 50 
cm of the bare soil profile, while there are appreciable soil mois-
ture changes even past 300 cm in the vegetated strip. The result is 
that nearly all of the high-intensity rainfall during the rainy sea-
son in this environment runs off the bare soil into the vegetated 

Fig. 21. Contrasting soil water depletion profiles from Central Site East–Tiger Bush, HAPEX-Sahel project (a) vegetated section and (b) bare soil 
section (modified from Cuenca et al., 1997).
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strip, which thereby receives on the order of 200% of the precipi-
tation. Verhoef (1995) noted this effect and that the result was 
a well-watered vegetation strip adjacent to a very dry bare soil 
strip in this environment. Verhoef (1995) was able to show that 
under the generally hot and dry conditions of the Sahel, advec-
tive conditions for sensible heat flux from the bare soil resulted 
such that the ET from the vegetated strip clearly exceeded the 
potential, or reference, ET rate (Verhoef et al., 1999; Verhoef and 
Allen, 2000). Carbon fluxes would obviously be affected by the 
heterogeneity in the Tiger Bush system as well.

To better understand and predict ecosystem dynamics such 
as these, different classes of ecological models have been developed 
for various scales and emphases. For example, biogeography mod-
els such as MAPSS (Neilson, 1995) and BIOME (Prentice et al., 
1992; Haxeltine and Prentice, 1996) focus on the distribution of 
species and ecosystems in space. Biogeochemistry models such 
as CENTURY/DAYCENT (Parton et al., 1987, 1998), RothC 
(Jenkinson and Coleman, 1994), and DNDC (Li et al., 1992) 
place emphasis on the C and nutrient cycles within ecosystems. 
Biophysics models based on soil–vegetation–atmosphere trans-
fer (SVAT) schemes (SiB: Sellers et al., 1986; BATS: Dickinson 
et al., 1986) have been developed to support regional and global 
climate modeling to provide accurate information for the fluxes of 
water, radiation, heat, and momentum between the atmosphere 
and the various land surfaces. Recently developed dynamic global 
vegetation models such as the Lund–Potsdam–Jena (LPJ) model 
(Sitch et al., 2003), IBIS (Foley et al., 1996), and MC1 (Bachelet 
et al., 2001) generally incorporate the above classes of models and 
schemes to simulate the dynamics of potential vegetation and its 
associated biogeochemical and hydrologic cycles.

These models estimate soil moisture content or its proxy us-
ing different schemes such as the bucket method (Robock et al., 
1995; Manabe, 1969), the precipitation to potential evapotrans-
piration ratio method (Scheffer et al., 2005), and the water bal-
ance model (Law et al., 2002). Details of these and other schemes 
were discussed by Shao and Henderson-Sellers (1996) and Ren 
et al. (2008). These schemes often use simple algorithms to re-
duce computational demand and are less reliable than schemes 
used in hydrologic models (e.g., the Richards equation [Richards, 
1931]). Also, especially in cases of large-scale ecological models, 
a more realistic parameterization of soil moisture content at sub-
grid-scale as related to topography is often desirable (Gordon et 
al., 2004). Optimization of the degree of the simplification and 
the spatial resolution is necessary due to computational restric-
tions but is difficult to judge due to the lack of adequate observa-
tional data with which to verify the performance of the models 
(Ren et al., 2008).

Traditionally, ecological models have been tested through 
comparison studies such as the Vegetation/Ecosystem Model-
ing and Analysis Project (VEMAP Members, 1995), the Car-
bon Land Model Project (Randerson et al., 2009), the Project 
for Intercomparison of Land-Surface Parameterization Schemes 
(Henderson-Sellers et al., 1996, 1995), and the Global Soil Wet-
ness Projects (Dirmeyer et al., 2006; Dirmeyer, 1999) because 

evaluating the model performance, especially at larger scales, 
has been difficult due to the incompleteness of observation data 
sets. These models are not independent, however, because they 
have integrated the same theories and relied on similar data sets 
as they evolved (Reichstein et al., 2003). Therefore, while model 
comparison is an important task, extreme care must be exercised 
in deriving any conclusions.

Future research advances in this area will require the use 
of new observation data at suitable spatial and temporal scales 
(Seneviratne et al., 2010). Observation data from large-scale soil 
moisture monitoring in particular should be valuable to validate 
the simplification and scaling of ecological models. Wagner et 
al. (2003) found that modeled 0- to 50-cm monthly average soil 
moisture from the LPJ dynamic global vegetation model agreed 
“reasonably well” for tropical and temperate locations with val-
ues derived from a satellite microwave scatterometer, yielding 
Pearson correlation coefficients >0.6. The agreement was poorer 
for drier and colder climatic regions. Few studies, however, have 
used large-scale soil moisture data to improve the structure or 
parameterizations of ecological models or to improve model pre-
dictions through data assimilation. 

Furthermore, the relationship between soil moisture and 
the terrestrial ecosystem is dynamic and interdependent: soil 
moisture constrains the properties of the ecosystem as de-
scribed above, which, in turn, modifies the hydrology through 
evapotranspiration, leaf area index, and surface roughness 
(Breshears and Barnes, 1999). Newer generations of ecological 
models, especially dynamic global vegetation models, include 
these important feedback processes to simulate the effects of 
future climate change on natural vegetation and associated C 
and hydrologic cycles. Validation of these models may reveal an 
increased need for data from large-scale soil moisture observa-
tions across various ecosystems and for continuous expansion 
of observation networks.

Hydrologic Modeling and Forecasting
One motivation underlying many large-scale soil moisture 

monitoring efforts is the desire to more accurately model and 
forecast watershed dynamics, especially streamflow and flood 
events. Pauwels et al. (2001) demonstrated the possibility of 
improved stream discharge estimates through the assimilation 
of surface soil moisture estimates derived using data from the 
ESA satellites ERS1 and ERS2 into a land–atmosphere transfer 
scheme. The study was limited to bare soil conditions and small 
catchments (<20 km2). The assimilation improved discharge es-
timates 20 to 50% in seven out of the 12 cases considered but de-
graded model accuracy by up to 10% in the remaining five cases. 
Francois et al. (2003) showed that the assimilation of ERS1 data 
into a simple two-layer land surface scheme through an extended 
Kalman filter approach improved the Nash–Sutcliffe efficiency 
(NSE) for streamflow from 70 to 85%. Their study involved a 
larger catchment (104 km2) than that of Pauwels et al. (2001) 
and included vegetation cover. The sensitivity of simulated flow 
to soil moisture was highest when soil moisture itself was high. 
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The assimilation scheme was also able to correct for 5 to 10% er-
rors in the input data, e.g., potential ET or precipitation.

More recent applications of large-scale soil moisture data for 
hydrologic modeling and forecasting have focused on newer sat-
ellite remote sensing data sets. Brocca et al. (2010) used a simple 
nudging scheme to assimilate the ASCAT surface soil wetness in-
dex into a rainfall–runoff model for five catchments (<700 km2) 
in the Upper Tiber River basin in Italy. Assimilation increased 
the NSE for streamflow prediction during flood events in all five 
catchments, with increases ranging from 2 to 17%. In a subse-
quent study, RZSM was estimated from the ASCAT surface soil 
moisture data through application of an exponential filter, and 
both data types were then assimilated into a two-layer rainfall–
runoff model using an ensemble Kalman filter approach (Brocca 
et al., 2012). Assimilation of the RZSM estimates produced a 
clear improvement in discharge prediction for a 137-km2 catch-
ment (NSE improved from 76 to 86%), while assimilation of 
surface soil moisture had only a small effect.

Thus far only a few studies have evaluated methods for us-
ing soil moisture data to improve hydrologic forecasting in catch-
ments of >1000 km2. One example is the work of Meier et al. 
(2011), in which the ERS1 and ERS2 soil water index was used, 
along with rainfall data, to drive a conceptual rainfall–runoff 
model in an ensemble Kalman filter framework assimilating ob-
served discharge every 10 d. The method was applied to three 
catchments in the Zambezi River basin in southern Africa. The 
catchments ranged in size from 95,300 to 281,000 km2. The 
catchment average soil water index correlated well with mea-
sured discharge when the data were shifted by a catchment-spe-
cific time lag. This time lag allowed 40-d lead time streamflow 
forecasts with a NSE value of 85% for the largest watershed, but 
in a catchment with steep slopes and little soil water storage, the 
lead time was as short as 10 d. Gains in streamflow forecast ac-
curacy have even been demonstrated by assimilating point soil 
moisture observations from a single location within a catchment 
of 1120 km2 together with streamflow data, suggesting that even 
sparse observation networks in large catchments can be quite 
useful (Fig. 22; Aubert et al., 2003). The effectiveness of the as-
similation process was dominated by streamflow assimilation 
when considering the entire period, but the effectiveness of the 
assimilation process was dominated by soil moisture assimilation 
during flood events.

That large-scale soil moisture monitoring can benefit hy-
drologic modeling and forecasting is now well established, with 
gains in forecast efficiency of 10 to 20% being typical; however, 
significant challenges and uncertainties remain. Most of the 
research to date in this area has focused on the use of satellite-
derived surface soil moisture products, with few studies using 
in situ soil moisture measurements within a data assimilation 
framework (Aubert et al., 2003; Chen et al., 2011). Thus, the 
world’s growing in situ soil moisture monitoring infrastructure 
(Table 1) is a virtually unexplored resource in this context, and 
many opportunities exist to develop hydrologic forecasting tools 
that utilize that infrastructure.

A key challenge associated with assimilation of soil mois-
ture data, regardless of the source, is to identify and overcome 
structural deficiencies in the hydrologic models themselves. 
For example, a data assimilation experiment using in situ soil 
moisture measurements in Oklahoma was generally unsuccess-
ful in improving streamflow predictions from the widely used 
Soil and Water Assessment Tool (SWAT) model (Chen et al., 
2011). The calibrated SWAT model significantly underestimated 
the vertical coupling of soil moisture between upper and lower 
soil layers, and the inadequate coupling was apparently a struc-
tural, rather than parametric, problem in the model. Thus, the 
ensemble Kalman filter assimilation approach was not effective 
in improving estimates of deep soil moisture or streamflow. This 
particular challenge of correctly representing linkages between 
soil moisture across two or more soil layers has been identified 
as a key concern in studies with other models as well (Brocca et 
al., 2012). Further research is needed to optimize the structure 
of SWAT and other hydrologic models to maximize the benefits 
from assimilating increasingly available large-scale soil moisture 
observations (Brocca et al., 2012).

Another challenge that has been encountered in this are-
na is uncertainty regarding proper characterization of model 
errors and observation errors within the assimilation proce-
dure (Francois et al., 2003; Brocca et al., 2012). Statistical 
representations of model errors must often be made in a some-
what arbitrary or subjective fashion, and preexisting biases in 
either the observations or the model can be particularly prob-
lematic (Chen et al., 2011; Brocca et al., 2012). Nevertheless, 
research in this area appears to be gaining momentum, and 
opportunities abound to advance hydrologic modeling and 
forecasting with the help of existing and emerging large-scale 
soil moisture data sets.

Fig. 22. Time series of streamflow (q) at the outlet of the Serein catch-
ment in the Seine river basin in France for 1 Feb. to 15 Mar. 2000. The 
solid line indicates measured streamflow, the dash-dotted line indicates 
1-d streamflow forecast without data assimilation, and the dashed line 
indicates 1-d streamflow forecast with assimilation of streamflow and 
in situ soil moisture data (Reprinted with permission from Elsevier from 
Aubert et al., 2003).



6	 Soil Science Society of America Journal

Primary Challenges and 
Opportunities

In this review, we have attempted to describe the state of the 
art in large-scale soil moisture monitoring and to identify some 
critical needs for research to optimize the use of increasingly 
available soil moisture data. We have considered: (i) emerging in 
situ and proximal sensing techniques, (ii) dedicated soil moisture 
remote sensing missions, (iii) soil moisture monitoring networks, 
and (iv) applications of large-scale soil moisture measurements. 
The primary challenges and opportunities in these topic areas 
can be summarized as follows. For emerging in situ and proximal 
sensing techniques (e.g., COSMOS and GPS), empirical confir-
mations of theoretical predictions regarding the variable mea-
surement depths are needed. Calibration procedures for these 
methods, as well as the DTS methods, need to be further refined 
and standardized with due accounting for site-specific factors 
such as soil and vegetation characteristics that influence instru-
ment performance. Spatial and temporal heterogeneity in these 
site-specific factors must also be considered in some instances, 
creating additional challenges. Also, the community of expertise 
for these methods, that is the number of researchers with the ca-
pability to advance these technologies, needs to be expanded.

Probably the largest share of scientific resources in this gen-
eral topic area is currently devoted to the advancement of satellite 
remote sensing approaches for soil moisture monitoring. These 
investments are bearing fruit, but challenges and opportunities 
remain. One significant challenge is to further improve meth-
ods for estimating the RZSM, the information we often need, 
using surface soil moisture observations, the information satel-
lites provide. Progress has been made toward this goal by using 
data assimilation into numerical models to retrieve the RZSM 
from near-surface observations. Improvements are also needed 
in downscaling relatively coarse-resolution remotely sensed soil 
moisture products to describe the subfootprint spatial variabil-
ity, which plays an important role in many applications. Coarse-
resolution, satellite-derived soil moisture products are challeng-
ing to validate (Reichle et al., 2004), so continuing efforts to 
effectively use these products for modeling and forecasting will 
probably play an important role in their evaluation. Although 
not primarily a scientific challenge, more work is needed to re-
duce problems associated with RFI. Similarly, continuity of mis-
sions is a necessity if remotely sensed soil moisture data are to be 
adopted for operational applications like NWP.

In contrast with remote sensing approaches, relatively few re-
sources are currently devoted toward large-scale in situ soil mois-
ture monitoring networks. Although the number of networks is 
growing steadily, the lack of standardization of procedures across 
networks is a significant challenge. There is a need for rigorous 
guidelines and standards to be developed and adopted worldwide 
for in situ soil moisture monitoring networks, similar to guide-
lines for the measurement of other meteorological variables. Best 
practice standards for sensor selection, calibration, installation, 
validation, and maintenance are needed, as well as standards for 
site selection, data quality assurance and quality control, data de-

livery, metadata delivery, and data archives. The recent recogni-
tion of soil moisture as an “essential climate variable” by the Glob-
al Climate Observing System and the development of the ISMN 
are positive steps in this direction, but much more is needed.

For both in situ networks and remote sensing approaches, 
sustainability is a significant challenge, perhaps underestimated. 
Societal and scientific needs for soil moisture data would seem 
to justify that our monitoring systems be designed to function 
without interruption for many decades. Current realities within 
science and society at large typically result in monitoring systems 
that are designed to function for only a few years. Researchers are 
rewarded for developing new systems and technologies, not for 
ensuring their long-term viability. Successful long-term opera-
tion of monitoring systems generally requires substantial state or 
federal support. Securing such long-term support for soil mois-
ture monitoring systems is often difficult. Thus, determining ef-
fective pathways to transition monitoring systems from research 
mode to operational mode remains a key challenge.

In closing, we again note the growing need to develop the 
science necessary to make effective use of the rising number of 
large-scale soil moisture data sets. One area where significant 
progress seems possible in the near term is the use of large-scale 
soil moisture data for drought monitoring. Already some progress 
has been made using in situ data for this purpose, and approaches 
using remote sensing data seem sure to follow. Significant efforts 
have been devoted to the use of soil moisture observations within 
the area of NWP. In general, assimilation of soil moisture data 
has resulted in only modest improvements in forecast skill. The 
primary problem is that the current model structures are not well 
suited for assimilation of these data, and the model physics may 
not be properly parameterized to allow accurate soil moisture val-
ues. A smaller effort, but arguably greater progress, has been made 
in the assimilation of soil moisture data into models designed pri-
marily for hydrologic prediction, especially rainfall–runoff mod-
els. Here gains in forecast efficiency of 10 to 20% are not uncom-
mon. Nonetheless, as with NWP, a key challenge is to identify or 
create models that are structured in a way that is optimal for the 
assimilation of soil moisture data. To date, little or no progress has 
been made in using large-scale soil moisture observations to im-
prove the structure, parameters, or forecasts of ecological models, 
and perhaps surprisingly, the same can be said for crop models. 
These topic areas are ripe with opportunities and challenges yet 
to be uncovered. Another frontier where the potential is great but 
the workers are few is the use of soil moisture observations in so-
cioeconomic modeling and forecasting to address issues such as 
drought impacts and food security (Simelton et al., 2012).

We are optimistic that these challenges and opportunities 
can be addressed by improved communication and collabora-
tion across the relevant disciplines. The international soil science 
community has much to contribute in this context. We hope 
that this review will be a small step toward further engaging that 
community in advancing the science and practice of large-scale 
soil moisture monitoring for the sake of improved Earth system 
monitoring, modeling, and forecasting.



www.soils.org/publications/sssaj	 6

Acknowledgments
The contribution of Tyson Ochsner has been funded by the Oklahoma 
Agricultural Experiment Station. The contribution of Wouter Dorigo 
has been funded through the SMOS Soil Moisture Network Study– Op-
erational Phase (ESA ESTEC Contract no.4000102722/10). The con-
tributions of Eric Small and Kristine Larson were funded by grants from 
NASA (NNX10AU84G) and NSF (AGS 0935725). The contribution 
of Marek Zreda has been funded through the COSMOS project by the 
U.S. National Science Foundation (Grant no. ATM-0838491). The con-
tribution of Eni Njoku was funded through the Jet Propulsion Labora-
tory, California Institute of Technology under contract with NASA.

References
Alavi, N., A.A. Berg, J.S. Warland, G. Parkin, D. Verseghy, and P. Bartlett. 2010. 

Evaluating the impact of assimilating soil moisture variability data on latent 
heat flux estimation in a land surface model. Can. Water Resour. J. 35:157–
172. doi:10.4296/cwrj3502157

Al Bitar, A., D. Leroux, Y.H. Kerr, O. Merlin, P. Richaume, A. Sahoo, and E.F. 
Wood. 2012. Evaluation of SMOS soil moisture products over continen-
tal U.S. using the SCAN/SNOTEL network. IEEE Trans. Geosci. Remote 
Sens. 50:1572–1586. doi:10.1109/TGRS.2012.2186581

Albergel, C., G. Balsamo, P. de Rosnay, J. Muñoz-Sabater, and S. Boussetta. 2012b. A 
bare ground evaporation revision in the ECMWF land-surface scheme: Eval-
uation of its impact using ground soil moisture and satellite microwave data. 
Hydrol. Earth Syst. Sci. 16:3607–3620. doi:10.5194/hess-16-3607-2012

Albergel, C., P. de Rosnay, C. Gruhier, J. Munoz-Sabater, S. Hasenauer, L. Isaksen, 
et al. 2012a. Evaluation of remotely sensed and modeled soil moisture prod-
ucts using global ground-based in situ observations. Remote Sens. Environ. 
118:215–226. doi:10.1016/j.rse.2011.11.017

Albergel, C., E. Zakharova, J.-C. Calvet, M. Zribi, M. Pardé, J.-P. Wigneron, et al. 
2011. A first assessment of the SMOS data in southwestern France using in 
situ and airborne soil moisture estimates: The CAROLS airborne campaign. 
Remote Sens. Environ. 115:2718–2728. doi:10.1016/j.rse.2011.06.012

Allen, R.G., L.S. Pereira, D. Raes, and M. Smith. 1998. Crop evapotranspiration: 
Guidelines for computing crop water requirements. Irrig. Drain. Pap. 56. 
FAO, Rome.

Anderson, W., B. Zaitchik, C. Hain, M. Anderson, M. Yilmaz, J. Mecikalski, and 
L. Schultz. 2012. Towards an integrated soil moisture drought monitor for 
East Africa. Hydrol. Earth Syst. Sci. Discuss. 9:4587–4631. doi:10.5194/
hessd-9-4587-2012

André, J.-C., J.-P. Goutorbe, A. Perrier, F. Becker, P. Bessemoulin, P. Bougeault, et 
al. 1988. Evaporation over land surfaces: First results from HAPEX-MO-
BILHY special observing period. Ann. Geophys. 6:477–492.

André, J.-C., J.-P. Goutorbe, and A. Perrier. 1986. HAPEX-MOBILHY: A hy-
drologic atmospheric experiment for the study of water budget and evapo-
ration flux at the climatic scale. Bull. Am. Meteorol. Soc. 67:138–144. 
doi:10.1175/1520-0477(1986)067<0138:HAHAEF>2.0.CO;2

Aubert, D., C. Loumagne, and L. Oudin. 2003. Sequential assimilation of soil 
moisture and streamflow data in a conceptual rainfall–runoff model. J. Hy-
drol. 280:145–161. doi:10.1016/S0022-1694(03)00229-4

Bachelet, D., J.M. Lenihan, C. Daly, R.P. Neilson, D.S. Ojima, and W.J. Parton. 
2001. MC1: A dynamic vegetation model for estimating the distribution of 
vegetation and associated carbon, nutrients, and water: Technical documen-
tation. Version 1.0. Gen. Tech. Rep. PNW-GTR-508. U.S. For. Serv. Pac. 
Northw. Res. Stn., Portland, OR.

Baker, J.M., and R.R. Allmaras. 1990. System for automating and multiplexing soil 
moisture measurement by time-domain reflectometry. Soil Sci. Soc. Am. J. 
54:1–6. doi:10.2136/sssaj1990.03615995005400010001x

Baldocchi, D., E. Falge, L. Gu, R. Olson, D. Hollinger, S. Running, et al. 
2001. FLUXNET: A new tool to study the temporal and spatial vari-
ability of ecosystem-scale carbon dioxide, water vapor, and energy flux 
densities. Bull. Am. Meteorol. Soc. 82:2415–2434. doi:10.1175/1520-
0477(2001)082<2415:FANTTS>2.3.CO;2

Bartalis, Z., W. Wagner, V. Naeimi, S. Hasenauer, K. Scipal, H. Bonekamp, 
et al. 2007. Initial soil moisture retrievals from the METOP-A Ad-
vanced Scatterometer (ASCAT). Geophys. Res. Lett. 34:L20401. 
doi:10.1029/2007GL031088

Basara, J.B., and K.C. Crawford. 2002. Linear relationships between root-zone 
soil moisture and atmospheric processes in the planetary boundary layer. J. 

Geophys. Res. 107(D15). doi:10.1029/2001JD000633
Best, M., C. Jones, I. Dharssi, and R. Quaggin. 2007. A physically based soil mois-

ture nudging scheme for the global model. Met Office Tech. Note. Met Of-
fice, Hadley Ctr., Exeter, UK.

Blonquist, J.M., S.B. Jones, and D.A. Robinson. 2005. Standardizing characteriza-
tion of electromagnetic water content sensors: 2. Evaluation of seven sensing 
systems. Vadose Zone J. 4:1059–1069. doi:10.2136/vzj2004.0141

Blyth, E., D.B. Clark, R. Ellis, C. Huntingford, S. Los, M. Pryor, et al. 2010. A 
comprehensive set of benchmark tests for a land surface model of simultane-
ous fluxes of water and carbon at both the global and seasonal scale. Geosci. 
Model Dev. Discuss. 3:1829–1859. doi:10.5194/gmdd-3-1829-2010

Bolten, J.D., W.T. Crow, Z. Xiwu, T.J. Jackson, and C.A. Reynolds. 2010. Evaluat-
ing the utility of remotely sensed soil moisture retrievals for operational ag-
ricultural drought monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote 
Sens. 3:57–66. doi:10.1109/JSTARS.2009.2037163

Bremond, L., A. Boom, and C. Favier. 2012. Neotropical C3/C4 grass distri-
butions: Present, past and future. Global Change Biol. 18:2324–2334. 
doi:10.1111/j.1365-2486.2012.02690.x

Breshears, D.D., and F.J. Barnes. 1999. Interrelationships between plant function-
al types and soil moisture heterogeneity for semiarid landscapes within the 
grassland/forest continuum: A unified conceptual model. Landscape Ecol. 
14:465–478. doi:10.1023/A:1008040327508

Bristow, K.L., G.S. Campbell, and K. Calissendorff. 1993. Test of a heat-pulse 
probe for measuring changes in soil water content. Soil Sci. Soc. Am. J. 
57:930–934. doi:10.2136/sssaj1993.03615995005700040008x

Brocca, L., F. Melone, T. Moramarco, W. Wagner, V. Naeimi, Z. Bartalis, and S. 
Hasenauer. 2010. Improving runoff prediction through the assimilation of 
the ASCAT soil moisture product. Hydrol. Earth Syst. Sci. 14:1881–1893. 
doi:10.5194/hess-14-1881-2010

Brocca, L., T. Moramarco, F. Melone, W. Wagner, S. Hasenauer, and S. Hahn. 
2012. Assimilation of surface- and root-zone ASCAT soil moisture prod-
ucts into rainfall–runoff modeling. IEEE Trans. Geosci. Remote Sens. 
50:2542–2555. doi:10.1109/TGRS.2011.2177468

Brock, F.V., K.C. Crawford, R.L. Elliott, G.W. Cuperus, S.J. Stadler, H.L. 
Johnson, and M.D. Eilts. 1995. The Oklahoma Mesonet: A techni-
cal overview. J. Atmos. Ocean. Technol. 12:5–19. doi:10.1175/1520-
0426(1995)012<0005:TOMATO>2.0.CO;2

Calvet, J.C., N. Fritz, F. Froissard, D. Suquia, A. Petitpa, and B. Piguet. 2007. In 
situ soil moisture observations for the CAL/VAL of SMOS: The SMOS-
MANIA network. In: Sensing and understanding our planet: International 
Geoscience and Remote Sensing Symposium, Barcelona, Spain. 23–28 July 
2007. IEEE, Piscataway, NJ. p. 1196–1199.

Calvet, J.-C., J. Noilhan, and P. Bessemoulin. 1998. Retrieving the root-zone soil 
moisture from surface soil moisture or temperature estimates: A feasibil-
ity study based on field measurements. J. Appl. Meteorol. 37:371–386. 
doi:10.1175/1520-0450(1998)037<0371:rtrzsm>2.0.co;2

Campbell, G.S., C. Calissendorff, and J.H. Williams. 1991. Probe for measuring 
soil specific heat using a heat-pulse method. Soil Sci. Soc. Am. J. 55:291–
293. doi:10.2136/sssaj1991.03615995005500010052x

Carroll, T.R. 1981. Airborne soil moisture measurement using natural terres-
trial gamma radiation. Soil Sci. 132:358–366. doi:10.1097/00010694-
198111000-00006

Carslaw, H.S., and J.C. Jaeger. 1959. Conduction of heat in solids. 2nd ed. Oxford 
Univ. Press, Oxford, UK.

Chang, A.T.C., S.G. Atwater, V.V. Salomonson, J.E. Estes, D.S. Simonett, and 
M.L. Bryan. 1980. L-band radar sensing of soil moisture. IEEE Trans. Geos-
ci. Remote Sens. GE-18:303–310. doi:10.1109/TGRS.1980.350306

Chen, F., W.T. Crow, P.J. Starks, and D.N. Moriasi. 2011. Improving hydrologic 
predictions of a catchment model via assimilation of surface soil moisture. 
Adv. Water Resour. 34:526–536. doi:10.1016/j.advwatres.2011.01.011

Chen, F., and J. Dudhia. 2001. Coupling an advanced land surface hydrol-
ogy model with the Penn State–NCAR MM5 modeling system: I. Mod-
el implementation and sensitivity. Mon. Weather Rev. 129:569–585. 
doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2

Chew, C., E. Small, K. Larson, and V. Zavorotny. 2013. Effects of near-surface 
soil moisture on GPS SNR data: Development of a retrieval algorithm 
for volumetric soil moisture. IEEE Trans. Geosci. Remote Sens. (in press). 
doi:10.1109/TGRS.2013.2242332

Collow, T.W., A. Robock, J.B. Basara, and B.G. Illston. 2012. Evaluation of 
SMOS retrievals of soil moisture over the central United States with 

http://dx.doi.org/10.4296/cwrj3502157
http://dx.doi.org/10.1109/TGRS.2012.2186581
http://dx.doi.org/10.5194/hess-16-3607-2012
http://dx.doi.org/10.1016/j.rse.2011.11.017
http://www.sciencedirect.com/science/article/pii/S0034425711002367
http://dx.doi.org/10.5194/hessd-9-4587-2012
http://dx.doi.org/10.5194/hessd-9-4587-2012
http://dx.doi.org/10.1175/1520-0477(1986)067%3C0138%3AHAHAEF%3E2.0.CO%3B2
http://dx.doi.org/10.1016/S0022-1694(03)00229-4
http://dx.doi.org/10.2136/sssaj1990.03615995005400010001x
http://dx.doi.org/10.1175/1520-0477(2001)082%3C2415%3AFANTTS%3E2.3.CO%3B2
http://dx.doi.org/10.1175/1520-0477(2001)082%3C2415%3AFANTTS%3E2.3.CO%3B2
http://dx.doi.org/10.1029/2007GL031088
http://dx.doi.org/10.1029/2001JD000633
http://dx.doi.org/10.2136/vzj2004.0141
http://www.geosci-model-dev-discuss.net/3/1829/2010/gmdd-3-1829-2010.html
http://dx.doi.org/10.1109/JSTARS.2009.2037163
http://dx.doi.org/10.1111/j.1365-2486.2012.02690.x
http://dx.doi.org/10.1023/A%3A1008040327508
http://dx.doi.org/10.2136/sssaj1993.03615995005700040008x
http://dx.doi.org/10.5194/hess-14-1881-2010
http://dx.doi.org/10.1109/TGRS.2011.2177468
http://dx.doi.org/10.1175/1520-0426(1995)012%3C0005%3ATOMATO%3E2.0.CO%3B2
http://dx.doi.org/10.1175/1520-0426(1995)012%3C0005%3ATOMATO%3E2.0.CO%3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0450%281998%29037%3C0371%3ARTRZSM%3E2.0.CO%3B2
http://dx.doi.org/10.2136/sssaj1991.03615995005500010052x
http://dx.doi.org/10.1097/00010694-198111000-00006
http://dx.doi.org/10.1097/00010694-198111000-00006
http://dx.doi.org/10.1109/TGRS.1980.350306
http://dx.doi.org/10.1016/j.advwatres.2011.01.011
http://dx.doi.org/10.1175/1520-0493(2001)129%3C0569%3ACAALSH%3E2.0.CO%3B2
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6479284&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6479284


6	 Soil Science Society of America Journal

currently available in situ observations. J. Geophys. Res. 117:D09113. 
doi:10.1029/2011JD017095

Curran, P.J. 1978. A photographic method for the recording of polarised visible 
light for soil surface moisture indications. Remote Sens. Environ. 7:305–
322. doi:10.1016/0034-4257(78)90022-6

Crow, W.T., A.A. Berg, M.H. Cosh, A. Loew, B.P. Mohanty, R. Panciera, et al. 
2012. Upscaling sparse ground-based soil moisture observations for the vali-
dation of coarse-resolution satellite soil moisture products. Rev. Geophys. 
50:RG2002. doi:10.1029/2011RG000372

Cuenca, R.H., J. Brouwer, A. Chanzy, P. Droogers, S. Galle, S.R. Gaze, et al. 1997. 
Soil measurements during HAPEX-Sahel intensive observation period. J. 
Hydrol. 188–189:224–266. doi:10.1016/S0022-1694(96)03161-7

Das, N.N., D. Entekhabi, and E.G. Njoku. 2011. An algorithm for merging 
SMAP radiometer and radar data for high-resolution soil-moisture re-
trieval. IEEE Trans. Geosci. Remote Sens. 49:1504–1512. doi:10.1109/
TGRS.2010.2089526

de Rosnay, P., M. Drusch, D. Vasiljevic, G. Balsamo, C. Albergel, and L. Isaksen. 
2013. A simplified Extended Kalman Filter for the global operational soil 
moisture analysis at ECMWF. Q. J. R. Meteorol. Soc. 139:1199–1213. 
doi:10.1002/qj.2023

de Rosnay, P., C. Gruhier, F. Timouk, F. Baup, E. Mougin, P. Hiernaux, et al. 2009. 
Multi-scale soil moisture measurements at the Gourma meso-scale site in 
Mali. J. Hydrol. 375:241–252. doi:10.1016/j.jhydrol.2009.01.015

Denning, A.S., editor. 2005. Science implementation strategy for the North Amer-
ican Carbon Program. U.S. Carbon Cycle Sci. Progr., Washington, DC.

Desilets, D., and M. Zreda. 2001. On scaling cosmogenic nuclide production rates 
for altitude and latitude using cosmic-ray measurements. Earth Planet. Sci. 
Lett. 193:213–225. doi:10.1016/S0012-821X(01)00477-0

Desilets, D., and M. Zreda. 2003. Spatial and temporal distribution of secondary 
cosmic-ray nucleon intensities and applications to in situ cosmogenic dating. 
Earth Planet. Sci. Lett. 206:21–42. doi:10.1016/S0012-821X(02)01088-9

Desilets, D., M. Zreda, and T. Ferré. 2010. Nature’s neutron probe: Land-sur-
face hydrology at an elusive scale with cosmic rays. Water Resour. Res. 
46:W11505. doi:10.1029/2009WR008726

Desilets, D., M. Zreda, and T. Prabu. 2006. Extended scaling factors for in situ 
cosmogenic nuclides: New measurements at low latitude. Earth Planet. Sci. 
Lett. 246:265–276. doi:10.1016/j.epsl.2006.03.051

Dharssi, I., K. Bovis, B. Macpherson, and C. Jones. 2011. Operational assimilation 
of ASCAT surface soil wetness at the Met Office. Hydrol. Earth Syst. Sci. 
15:2729–2746. doi:10.5194/hess-15-2729-2011

Dickey, F.M., C. King, J.C. Holtzman, and R.K. Moore. 1974. Moisture de-
pendency of radar backscatter from irrigated and non-irrigated fields 
at 400 MHz and 13.3 GHz. IEEE Trans. Geosci. Electron. 12:19–22. 
doi:10.1109/TGE.1974.294326

Dickinson, R.E., A. Henderson-Sellers, P.J. Kennedy, and M.F. Wilson. 1986. Bio-
sphere–Atmosphere Transfer Scheme (BATS) for the NCAR CCM. Natl. 
Ctr. for Atmos. Res., Boulder, CO.

Dirmeyer, P. 1999. Assessing GCM sensitivity to soil wetness using GSWP data. J. 
Meteorol. Soc. Jpn. 77(1B):367–385.

Dirmeyer, P.A., X. Gao, M. Zhao, Z. Guo, T. Oki, and N. Hanasaki. 2006. 
GSWP-2 : Multimodel analysis and implications for our perception of 
the land surface. Bull. Am. Meteorol. Soc. 87:1381–1397. doi:10.1175/
BAMS-87-10-1381

Dobriyal, P., A. Qureshi, R. Badola, and S.A. Hussain. 2012. A review of the 
methods available for estimating soil moisture and its implications for water 
resource management. J. Hydrol. 458–459:110–117. doi:10.1016/j.jhy-
drol.2012.06.021

Dorigo, W.A., W. Wagner, R. Hohensinn, S. Hahn, C. Paulik, A. Xaver, et al. 
2011b. The International Soil Moisture Network: A data hosting facil-
ity for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 
15:1675–1698. doi:10.5194/hess-15-1675-2011

Dorigo, W.A., A. Xaver, M. Vreugdenhil, A. Gruber, A. Hegyiová, A.D. Sanchis-
Dufau, et al. 2013. Global automated quality control of in situ soil moisture 
data from the International Soil Moisture Network. Vadose Zone J. 12(3). 
doi:10.2136/vzj2012.0097

Dorigo, W., P. van Oevelen, W. Wagner, M. Drusch, S. Mecklenburg, A. 
Robock, and T. Jackson. 2011a. A new international network for in 
situ soil moisture data. Eos Trans. Am. Geophys. Union 92:141–142. 
doi:10.1029/2011EO170001

Douville, H., P. Viterbo, J.-F. Mahfouf, and A. Beljaars. 2000. Evaluation of the 

optimum interpolation and nudging techniques for soil moisture analysis 
using FIFE data. Mon. Weather Rev. 128:1733–1756. doi:10.1175/1520-
0493(2000)128<1733:EOTOIA>2.0.CO;2

Draper, C., J.-F. Mahfouf, and J. Walker. 2011. Root-zone soil moisture from the 
assimilation of screen-level variables and remotely sensed soil moisture. J. 
Geophys. Res. 116:D02127. doi:10.1029/2010JD013829

Drusch, M., and P. Viterbo. 2007. Assimilation of screen-level variables in EC-
MWF’s Integrated Forecast System: A study on the impact on the forecast 
quality and analyzed soil moisture. Mon. Weather Rev. 135:300–314. 
doi:10.1175/MWR3309.1

Drusch, M., K. Scipal, P. de Rosnay, G. Balsamo, E. Andersson, P. Bougeault, 
and P. Viterbo. 2009. Towards a Kalman Filter based soil moisture analysis 
system for the operational ECMWF Integrated Forecast System. Geophys. 
Res. Lett. 36:L10401. doi:10.1029/2009GL037716

Ek, M.B., and R.H. Cuenca. 1994. Variation in soil parameters: Implications for 
modeling surface fluxes and atmospheric boundary-layer development. 
Boundary-Layer Meteorol. 70:369–383. doi:10.1007/BF00713776

Ek, M.B., and A.A.M. Holtslag. 2004. Influence of soil moisture on boundary 
layer cloud development. J. Hydrometeorol. 5:86–99. doi:10.1175/1525-
7541(2004)005<0086:IOSMOB>2.0.CO;2

Ek, M.B., and L. Mahrt. 1994. Daytime evolution of relative humidity at the bound-
ary-layer top. Mon. Weather Rev. 122:2709–2721. doi:10.1175/1520-
0493(1994)122<2709:DEORHA>2.0.CO;2

Ek, M.B., K.E. Mitchell, Y. Lin, E. Rogers, P. Grummann, V. Koren, et al. 2003. 
Implementation of Noah land surface model advances in the National Cen-
ters for Environmental Prediction operational mesoscale Eta model. J. Geo-
phys. Res. 108:8851. doi:10.1029/2002JD003296

Entekhabi, D., E.G. Njoku, P.E. O’Neill, K.H. Kellogg, W.T. Crow, W.N. Edel-
stein, et al. 2010. The soil moisture active passive (SMAP) mission. Proc. 
IEEE 98:704–716. doi:10.1109/JPROC.2010.2043918

Escorihuela, M.J., A. Chanzy, J.P. Wigneron, and Y.H. Kerr. 2010. Effective soil 
moisture sampling depth of L-band radiometry: A case study. Remote Sens. 
Environ. 114:995–1001. doi:10.1016/j.rse.2009.12.011

Evett, S.R. 2001. Exploits and endeavors in soil water management and conserva-
tion using nuclear techniques. In: Nuclear techniques in integrated plant 
nutrient, water, and soil management: Proceedings of an International Sym-
posium, Vienna, Austria. 16–20 Oct. 2000. C&S Pap. Ser. 11. Int. Atomic 
Energy Agency, Vienna. p. 151–177.

Field, C.B., R.B. Jackson, and H.A. Mooney. 1995. Stomatal responses to in-
creased CO2: Implications from the plant to the global scale. Plant Cell 
Environ. 18:1214–1225. doi:10.1111/j.1365-3040.1995.tb00630.x

Foley, J.A., I.C. Prentice, N. Ramankutty, S. Levis, D. Pollard, S. Sitch, and A. 
Haxeltine. 1996. An integrated biosphere model of land surface processes, 
terrestrial carbon balance, and vegetation dynamics. Global Biogeochem. 
Cycles 10:603–628. doi:10.1029/96GB02692

Francois, C., A. Quesney, and C. Ottlé. 2003. Sequential assimilation of ERS-
1 SAR data into a coupled land surface–hydrological model using an ex-
tended Kalman filter. J. Hydrometeorol. 4:473–487. doi:10.1175/1525-
7541(2003)4<473:SAOESD>2.0.CO;2

Franz, T.E., M. Zreda, R. Rosolem, and T.P.A. Ferré. 2012. Field validation of a 
cosmic-ray neutron sensor using a distributed sensor network. Vadose Zone 
J. 11(4). doi:10.2136/vzj2012.0046

Franz, T.E., M. Zreda, R. Rosolem, and T.P.A. Ferré. 2013. A universal calibration 
function for determination of soil moisture with cosmic-ray neutrons. Hy-
drol. Earth Syst. Sci. 17:453–460. doi:10.5194/hess-17-453-2013

Fredlund, D.G., and D.K.H. Wong. 1989. Calibration of thermal conductiv-
ity sensors for measuring soil suction. Geotech. Test. J. 12:188–194. 
doi:10.1520/GTJ10967J

Friedlingstein, P., P. Cox, R. Betts, L. Bopp, W. von Bloh, V. Brovkin, et al. 2006. 
Climate–carbon cycle feedback analysis: Results from the C4MIP model 
intercomparison. J. Clim. 19:3337–3353. doi:10.1175/JCLI3800.1

Gardner, W., and D. Kirkham. 1952. Determination of soil moisture by neutron 
scattering. Soil Sci. 73:391–402. doi:10.1097/00010694-195205000-00007

Global Climate Observing System. 2010. Implementation plan for the Global 
Observing System for Climate in support of the UNFCCC. IP-10. World 
Meteorol. Org., Geneva, Switzerland.

Georgiadou, Y., and A. Kleusberg. 1988. On carrier signal multipath effects in 
relative GPS positioning. Manuscr. Geod. 13:172–179.

Gerten, D., S. Schaphoff, U. Haberlandt, W. Lucht, and S. Sitch. 2004. Terres-
trial vegetation and water balance: Hydrological evaluation of a dynamic 

http://dx.doi.org/10.1029/2011JD017095
http://dx.doi.org/10.1016/0034-4257(78)90022-6
http://dx.doi.org/10.1029/2011RG000372
http://www.sciencedirect.com/science/article/pii/S0022169496031617
http://dx.doi.org/10.1109/TGRS.2010.2089526
http://dx.doi.org/10.1109/TGRS.2010.2089526
http://onlinelibrary.wiley.com/doi/10.1002/qj.2023/abstract
http://dx.doi.org/10.1016/j.jhydrol.2009.01.015
http://dx.doi.org/10.1016/S0012-821X(01)00477-0
http://dx.doi.org/10.1016/S0012-821X(02)01088-9
http://dx.doi.org/10.1029/2009WR008726
http://dx.doi.org/10.1016/j.epsl.2006.03.051
http://dx.doi.org/10.5194/hess-15-2729-2011
http://dx.doi.org/10.1109/TGE.1974.294326
http://dx.doi.org/10.1175/BAMS-87-10-1381
http://dx.doi.org/10.1175/BAMS-87-10-1381
http://dx.doi.org/10.1016/j.jhydrol.2012.06.021
http://dx.doi.org/10.1016/j.jhydrol.2012.06.021
http://dx.doi.org/10.5194/hess-15-1675-2011
https://www.soils.org/publications/vzj/abstracts/12/3/vzj2012.0097
http://dx.doi.org/10.1029/2011EO170001
http://dx.doi.org/10.1175/1520-0493(2000)128%3C1733%3AEOTOIA%3E2.0.CO%3B2
http://dx.doi.org/10.1175/1520-0493(2000)128%3C1733%3AEOTOIA%3E2.0.CO%3B2
http://dx.doi.org/10.1029/2010JD013829
http://dx.doi.org/10.1175/MWR3309.1
http://dx.doi.org/10.1029/2009GL037716
http://dx.doi.org/10.1007/BF00713776
http://dx.doi.org/10.1175/1525-7541(2004)005%3C0086%3AIOSMOB%3E2.0.CO%3B2
http://dx.doi.org/10.1175/1525-7541(2004)005%3C0086%3AIOSMOB%3E2.0.CO%3B2
http://dx.doi.org/10.1175/1520-0493(1994)122%3C2709%3ADEORHA%3E2.0.CO%3B2
http://dx.doi.org/10.1175/1520-0493(1994)122%3C2709%3ADEORHA%3E2.0.CO%3B2
http://dx.doi.org/10.1029/2002JD003296
http://dx.doi.org/10.1109/JPROC.2010.2043918
http://dx.doi.org/10.1016/j.rse.2009.12.011
http://dx.doi.org/10.1111/j.1365-3040.1995.tb00630.x
http://dx.doi.org/10.1029/96GB02692
http://dx.doi.org/10.1175/1525-7541(2003)4%3C473%3ASAOESD%3E2.0.CO%3B2
http://dx.doi.org/10.1175/1525-7541(2003)4%3C473%3ASAOESD%3E2.0.CO%3B2
http://dx.doi.org/10.2136/vzj2012.0046
http://dx.doi.org/10.5194/hess-17-453-2013
http://dx.doi.org/10.1520/GTJ10967J
http://dx.doi.org/10.1175/JCLI3800.1
http://dx.doi.org/10.1097/00010694-195205000-00007


www.soils.org/publications/sssaj	 6

global vegetation model. J. Hydrol. 286:249–270. doi:10.1016/j.jhy-
drol.2003.09.029

Gil-Rodríguez, M., L. Rodríguez-Sinobas, J. Benítez-Buelga, and R. Sánchez-
Calvo. 2013. Application of active heat pulse method with fiber optic 
temperature sensing for estimation of wetting bulbs and water distribu-
tion in drip emitters. Agric. Water Manage. 120:72–78. doi:10.1016/j.
agwat.2012.10.012

Gordon, W.S., J.S. Famiglietti, N.L. Fowler, T.G.F. Kittel, and K.A. Hibbard. 
2004. Validation of simulated runoff from six terrestrial ecosystem models: 
Results from VEMAP. Ecol. Appl. 14:527–545. doi:10.1890/02-5287

Gruber, A., W. Dorigo, S. Zwieback, A. Xaver, and W. Wagner. 2013. Character-
izing coarse-scale representativeness of in situ soil moisture measurements 
from the International Soil Moisture Network. Vadose Zone J. 12(2). 
doi:10.2136/vzj2012.0170

Guttman, N.B. 1999. Accepting the standardized precipitation index: A 
calculation algorithm. J. Am. Water Resour. Assoc. 35:311–322. 
doi:10.1111/j.1752-1688.1999.tb03592.x

Haxeltine, A., and I.C. Prentice. 1996. BIOME3: An equilibrium terrestrial bio-
sphere model based on ecophysiological constraints, resource availability, 
and competition among plant functional types. Global Biogeochem. Cycles 
10(4):693–709. doi:10.1029/96GB02344

Hallikainen, M., F. Ulaby, M. Dobson, M. El-Rayes, and L. Wu. 1985. Microwave 
dielectric behavior of wet soil: I. Empirical models and experimental ob-
servations. IEEE Trans. Geosci. Remote Sens. GE-23:25–34. doi:10.1109/
TGRS.1985.289497

Heitman, J.L., J.M. Basinger, G.J. Kluitenberg, J.M. Ham, J.M. Frank, and P.L. 
Barnes. 2003. Field evaluation of the dual-probe heat-pulse method for 
measuring soil water content. Vadose Zone J. 2:552–560.

Henderson-Sellers, A., A.J. Pitman, P.K. Love, P. Irannejad, and T.H. Chen. 
1995. The Project for Intercomparison of Land Surface Parameterization 
Schemes (PILPS): Phases 2 and 3. Bull. Am. Meteorol. Soc. 76:489–503. 
doi:10.1175/1520-0477(1995)076<0489:TPFIOL>2.0.CO;2

Henderson-Sellers, A., K. McGuffie, and A.J. Pitman. 1996. The Project for Inter-
comparison of Land-Surface Parameterization Schemes (PILPS): 1992 to 
1995. Clim. Dyn. 12:849–859. doi:10.1007/s003820050147

Hess, H. 2001. Assimilation of screen-level observations by variational soil 
moisture analysis. Meteorol. Atmos. Phys. 77:145–154. doi:10.1007/
s007030170023

Hoeben, R., and P.A. Troch. 2000. Assimilation of active microwave observation 
data for soil moisture profile estimation. Water Resour. Res. 36:2805–2819. 
doi:10.1029/2000WR900100

Hollinger, S.E., and S.A. Isard. 1994. A soil moisture climatology of Illinois. J. Clim. 
7:822–833. doi:10.1175/1520-0442(1994)007<0822:ASMCOI>2.0.CO;2

Hoogenboom, G. 1993. The Georgia automated environmental monitoring net-
work. Southeast. Clim. Rev. 4:12–18.

Hubbard, K.G., J. You, V. Sridhar, E. Hunt, S. Korner, and G. Roebke. 2009. Near-
surface soil-water monitoring for water resources management on a wide-
area basis in the Great Plains. Great Plains Res. 19:45–54.

Hunt, E.D., K.G. Hubbard, D.A. Wilhite, T.J. Arkebauer, and A.L. Dutcher. 
2009. The development and evaluation of a soil moisture index. Int. J. Cli-
matol. 29:747–759. doi:10.1002/joc.1749

Illston, B.G., J. Basara, D.K. Fischer, R.L. Elliott, C. Fiebrich, K.C. Crawford, et 
al. 2008. Mesoscale monitoring of soil moisture across a statewide network. 
J. Atmos. Ocean. Technol. 25:167–182. doi:10.1175/2007JTECHA993.1

Ise, T., and P.R. Moorcroft. 2006. The global-scale temperature and moisture de-
pendencies of soil organic carbon decomposition: An analysis using a mech-
anistic decomposition model. Biogeochemistry 80:217–231. doi:10.1007/
s10533-006-9019-5

Jackson, T.J., M.H. Cosh, R. Bindlish, P.J. Starks, D.D. Bosch, M.S. Seyfried, et 
al. 2010. Validation of Advanced Microwave Scanning Radiometer soil 
moisture products. IEEE Trans. Geosci. Remote Sens. 48:4256–4272. 
doi:10.1109/TGRS.2010.2051035

Jackson, T.J., and T.J. Schmugge. 1989. Passive microwave remote-sensing system 
for soil-moisture: Some supporting research. IEEE Trans. Geosci. Remote 
Sens. 27:225–235. doi:10.1109/36.20301

Jackson, T.J., and T.J. Schmugge. 1991. Vegetation effects on the microwave 
emission of soils. Remote Sens. Environ. 36:203–212. doi:10.1016/0034-
4257(91)90057-D

Jackson, T.J., R. Bindlish, M.H. Cosh, T.J. Zhao, P.J. Starks, D.D. Bosch, et al. 
2012. Validation of Soil Moisture and Ocean Salinity (SMOS) soil mois-

ture over watershed networks in the U.S. IEEE Trans. Geosci. Remote Sens. 
50:1530–1543. doi:10.1109/TGRS.2011.2168533

Jacquette, E., A. Al Bitar, A. Mialon, Y. Kerr, A. Quesney, F. Cabot, and P. Richau-
me. 2010. SMOS CATDS Level 3 global products over land. SPIE Proc. 
7824:12. doi:10.1117/12.865093

Jenkinson, D.S., and K. Coleman. 1994. Calculating the annual input of organic 
matter to soil from measurements of total organic carbon and radiocarbon. 
Eur. J. Soil Sci. 45:167–174. doi:10.1111/j.1365-2389.1994.tb00498.x

Katzberg, S., O. Torres, M. Grant, and D. Masters. 2005. Utilizing calibrated 
GPS reflected signals to estimate soil reflectivity and dielectric constant: 
Results from SMEX02. Remote Sens. Environ. 100:17–28. doi:10.1016/j.
rse.2005.09.015

Keller, M., D.S. Schimel, W.W. Hargrove, and F.M. Hoffman. 2008. 
A continental strategy for the National Ecological Observatory 
Network. Front. Ecol. Environ. 6:282–287. doi:10.1890/1540-
9295(2008)6[282:ACSFTN]2.0.CO;2

Kerr, Y.H., P. Waldteufel, P. Richaume, J.P. Wigneron, P. Ferrazzoli, A. Mahmoodi, 
et al. 2012. The SMOS soil moisture retrieval algorithm. IEEE Trans. Geos-
ci. Remote Sens. 50:1384–1403. doi:10.1109/TGRS.2012.2184548

Kerr, Y.H., P. Waldteufel, J.P. Wigneron, S. Delwart, F. Cabot, J. Boutin, et al. 2010. 
The SMOS mission: New tool for monitoring key elements of the global 
water cycle. Proc. IEEE 98:666–687. doi:10.1109/JPROC.2010.2043032

Kerr, Y.H., P. Waldteufel, J.-P. Wigneron, J.-M. Martinuzzi, J. Font, and M. Berger. 
2001. Soil moisture retrieval from space: The Soil Moisture and Ocean Sa-
linity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 39:1729–1735. 
doi:10.1109/36.942551

Knoll, G.F. 2000. Radiation detection and measurement. John Wiley & Sons, 
New York.

Kumar, M., G. Bhatt, and C. Duffy. 2010. The role of physical, numerical and data 
coupling in a mesoscale watershed model (PIHM). http://www.pihm.psu.
edu/pub/PIHM_2010.pdf

Lagerloef, G.S.E. 2001. Satellite measurements of salinity. In: S.T.J. Steele and K. 
Turekian, editors, Encyclopedia of ocean sciences. Academic Press, London. 
p. 2511–2516.

Larson, K.M., J.J. Braun, E.E. Small, V.U. Zavorotny, E.D. Gutmann, and A.L. 
Bilich. 2010. GPS multipath and its relation to near-surface soil mois-
ture content. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 3:91–99. 
doi:10.1109/JSTARS.2009.2033612

Larson, K.M., E.E. Small, E. Gutmann, A. Bilich, P. Axelrad, and J. Braun. 2008a. 
Using GPS multipath to measure soil moisture fluctuations: Initial results. 
GPS Solut. 12:173–177. doi:10.1007/s10291-007-0076-6

Larson, K.M., E.E. Small, E.D. Gutmann, A.L. Bilich, J.J. Braun, and V.U. Zavor-
otny. 2008b. Use of GPS receivers as a soil moisture network for water cycle 
studies. Geophys. Res. Lett. 35:L24405. doi:10.1029/2008GL036013

Law, B.E., E. Falge, L. Gu, D.D. Baldocchi, P. Bakwin, P. Berbigier, et al. 2002. 
Environmental controls over carbon dioxide and water vapor exchange 
of terrestrial vegetation. Agric. For. Meteorol. 113:97–120. doi:10.1016/
S0168-1923(02)00104-1

Le Houérou, H.N. 1996. Climate change, drought and desertification. J. Arid En-
viron. 34:133–185. doi:10.1006/jare.1996.0099

Le Vine, D. 1988. Synthetic aperture microwave radiometer. Lab. Oceans 1:237–238.
Le Vine, D.M., A.J. Griffis, C.T. Swift, and T.J. Jackson. 1994. ESTAR: A syn-

thetic aperture microwave radiometer for remote sensing applications. Proc. 
IEEE 82:1787–1801. doi:10.1109/5.338071.

Le Vine, D.M., M. Kao, A.B. Tanner, C.T. Swift, and A. Griffis. 1990. Ini-
tial results in the development of a synthetic aperture microwave radi-
ometer. IEEE Trans. Geosci. Remote Sens. 28:614–619. doi:10.1109/
TGRS.1990.572965

Li, B., and R. Avissar. 1994. The impact of spatial variability of land-surface charac-
teristics on land-surface heat fluxes. J. Clim. 7:527–537. doi:10.1175/1520-
0442(1994)007<0527:TIOSVO>2.0.CO;2

Li, C., S. Frolking, and T.A. Frolking. 1992. A model of nitrous oxide evolution 
from soil driven by rainfall events: 1. Model structure and sensitivity. J. Geo-
phys. Res. 97(D9):9759–9776. doi:10.1029/92JD00509

Lowe, S.T., J.L. LaBrecque, C. Zuffada, L.J. Romans, L.E. Young, and G. A. Hajj. 
2002. First spaceborne observation of an Earth-reflected GPS signal. Radio 
Sci. 37(1). doi:10.1029/2000RS002539

Mahfouf, J.-F. 1991. Analysis of soil moisture from near-surface parameters: A 
feasibility study. J. Appl. Meteorol. 30:1534–1547. doi:10.1175/1520-
0450(1991)030<1534:AOSMFN>2.0.CO;2

http://dx.doi.org/10.1016/j.jhydrol.2003.09.029
http://dx.doi.org/10.1016/j.jhydrol.2003.09.029
http://www.sciencedirect.com/science/article/pii/S0378377412002594
http://www.sciencedirect.com/science/article/pii/S0378377412002594
http://dx.doi.org/10.1890/02-5287
https://www.soils.org/publications/vzj/abstracts/12/2/vzj2012.0170
http://dx.doi.org/10.1111/j.1752-1688.1999.tb03592.x
http://dx.doi.org/10.1029/96GB02344
http://dx.doi.org/10.1109/TGRS.1985.289497
http://dx.doi.org/10.1109/TGRS.1985.289497
http://dx.doi.org/10.1175/1520-0477(1995)076%3C0489%3ATPFIOL%3E2.0.CO%3B2
http://dx.doi.org/10.1007/s003820050147
http://link.springer.com/content/pdf/10.1007/s007030170023.pdf
http://link.springer.com/content/pdf/10.1007/s007030170023.pdf
http://dx.doi.org/10.1029/2000WR900100
http://dx.doi.org/10.1175/1520-0442(1994)007%3C0822%3AASMCOI%3E2.0.CO%3B2
http://dx.doi.org/10.1002/joc.1749
http://dx.doi.org/10.1175/2007JTECHA993.1
http://dx.doi.org/10.1007/s10533-006-9019-5
http://dx.doi.org/10.1007/s10533-006-9019-5
http://dx.doi.org/10.1109/TGRS.2010.2051035
http://dx.doi.org/10.1109/36.20301
http://dx.doi.org/10.1016/0034-4257(91)90057-D
http://dx.doi.org/10.1016/0034-4257(91)90057-D
http://dx.doi.org/10.1109/TGRS.2011.2168533
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=724912
http://dx.doi.org/10.1111/j.1365-2389.1994.tb00498.x
http://www.sciencedirect.com/science/article/pii/S0034425705002932
http://www.sciencedirect.com/science/article/pii/S0034425705002932
http://dx.doi.org/10.1890/1540-9295(2008)6[282%3AACSFTN]2.0.CO%3B2
http://dx.doi.org/10.1890/1540-9295(2008)6[282%3AACSFTN]2.0.CO%3B2
http://dx.doi.org/10.1109/TGRS.2012.2184548
http://dx.doi.org/10.1109/JPROC.2010.2043032
http://dx.doi.org/10.1109/36.942551
http://dx.doi.org/10.1109/JSTARS.2009.2033612
http://dx.doi.org/10.1007/s10291-007-0076-6
http://dx.doi.org/10.1029/2008GL036013
http://dx.doi.org/10.1016/S0168-1923(02)00104-1
http://dx.doi.org/10.1016/S0168-1923(02)00104-1
http://dx.doi.org/10.1006/jare.1996.0099
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=338071
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=572965
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=572965
http://dx.doi.org/10.1175/1520-0442(1994)007%3C0527%3ATIOSVO%3E2.0.CO%3B2
http://dx.doi.org/10.1175/1520-0442(1994)007%3C0527%3ATIOSVO%3E2.0.CO%3B2
http://dx.doi.org/10.1029/92JD00509
http://onlinelibrary.wiley.com/doi/10.1029/2000RS002539/abstract
http://dx.doi.org/10.1175/1520-0450(1991)030%3C1534%3AAOSMFN%3E2.0.CO%3B2
http://dx.doi.org/10.1175/1520-0450(1991)030%3C1534%3AAOSMFN%3E2.0.CO%3B2


6	 Soil Science Society of America Journal

Mahfouf, J.-F., K. Bergaoui, C. Draper, C. Bouyssel, F. Taillefer, and L. Ta-
seva. 2009. A comparison of two off-line soil analysis schemes for as-
similation of screen-level observations. J. Geophys. Res. 114:D08105. 
doi:10.1029/2008JD011077

Mahrt, L., and H.-L. Pan. 1984. A two-layer model of soil hydrology. Boundary-
Layer Meteorol. 29:1–20. doi:10.1007/BF00119116

Manabe, S. 1969. Climate and the ocean circulation. Mon. Weather Rev. 97:739–
774. doi:10.1175/1520-0493(1969)097<0739:CATOC>2.3.CO;2

McPherson, R.A., C.A. Fiebrich, K.C. Crawford, J.R. Kilby, D.L. Grimsley, J.E. 
Martinez, et al. 2007. Statewide monitoring of the mesoscale environment: 
A technical update on the Oklahoma Mesonet. J. Atmos. Ocean. Technol. 
24:301–321. doi:10.1175/JTECH1976.1

Meier, P., A. Frömelt, and W. Kinzelbach. 2011. Hydrological real-time modelling 
in the Zambezi river basin using satellite-based soil moisture and rainfall 
data. Hydrol. Earth Syst. Sci. 15:999–1008. doi:10.5194/hess-15-999-2011

Merlin, O., A. Al Bitar, J.P. Walker, and Y. Kerr. 2010. An improved algorithm 
for disaggregating microwave-derived soil moisture based on red, near-in-
frared and thermal-infrared data. Remote Sens. Environ. 114:2305–2316. 
doi:10.1016/j.rse.2010.05.007

Merlin, O., C. Rudiger, A. Al Bitar, P. Richaume, J.P. Walker, and Y.H. Kerr. 
2012. Disaggregation of SMOS soil moisture in southeastern Austra-
lia. IEEE Trans. Geosci. Remote Sens. 50:1556–1571. doi:10.1109/
TGRS.2011.2175000

Mishra, A.K., and V.P. Singh. 2010. A review of drought concepts. J. Hydrol. 
391:202–216. doi:10.1016/j.jhydrol.2010.07.012

Moghaddam, M. 2009. Polarimetric SAR phenomenology and inversion tech-
niques for vegetated terrain. In: T. Warner, editor, SAGE remote sensing 
handbook. Sage Publ., London. p. 79–93. doi:10.4135/9780857021052.n6

Moghaddam, M., S. Saatchi, and R. Cuenca. 2000. Estimating subcanopy 
soil moisture with radar. J. Geophys. Res. 105(D11):14899–14911. 
doi:10.1029/2000JD900058

Monna, W.A.A., and J.G. van der Vliet. 1987. Facilities for research and weather 
observations on the 213-m tower at Cabauw and at remote locations. KNMI 
Sci. Rep. WP-87-5. R. Neth. Meteorol. Inst., De Bilt, the Netherlands.

Montaldo, N., J.D. Albertson, M. Mancini, and G. Kiely. 2001. Robust simulation 
of root zone soil moisture with assimilation of surface soil moisture data. 
Water Resour. Res. 37:2889–2900. doi:10.1029/2000WR000209

Moorcroft, P.R., G.C. Hurtt, and S.W. Pacala. 2001. A method for scaling vegetation 
dynamics: The ecosystem demography model (ED). Ecol. Monogr. 71:557–
585. doi:10.1890/0012-9615(2001)071[0557:AMFSVD]2.0.CO;2

Mozny, M., M. Trnka, Z. Zalud, P. Hlavinka, J. Nekovar, V. Potop, and M. Virag. 
2012. Use of a soil moisture network for drought monitoring in the Czech Re-
public. Theor. Appl. Climatol. 107:99–111. doi:10.1007/s00704-011-0460-6

Narasimhan, B., and R. Srinivasan. 2005. Development and evaluation of Soil 
Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index 
(ETDI) for agricultural drought monitoring. Agric. For. Meteorol. 133:69–
88. doi:10.1016/j.agrformet.2005.07.012

Neilson, R.P. 1995. A model for predicting continental-scale vegetation distribu-
tion and water balance. Ecol. Appl. 5:362–385. doi:10.2307/1942028

Njoku, E.G., T.J. Jackson, V. Lakshmi, T.K. Chan, and S.V. Nghiem. 2003. Soil 
moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens. 
41:215–229. doi:10.1109/TGRS.2002.808243

Ochsner, T.E., R. Horton, and T. Ren. 2003. Use of the dual-probe heat-pulse 
technique to monitor soil water content in the vadose zone. Vadose Zone 
J. 2:572–579.

Oliva, R., E. Daganzo, Y. Kerr, S. Mecklenburg, S. Nieto, P. Richaume, and 
C. Gruhier. 2012. SMOS RF interference scenario: Status and actions 
taken to improve the RFI environment in the 1400–1427 MHz passive 
band. IEEE Trans. Geosci. Remote Sens. 50:1427–1439. doi:10.1109/
TGRS.2012.2182775

Orchard, V.A., and F.J. Cook. 1983. Relationship between soil respiration 
and soil moisture. Soil Biol. Biochem. 15:447–453. doi:10.1016/0038-
0717(83)90010-X

Owe, M., R.A.M. de Jeu, and J.P. Walker. 2001. A methodology for surface soil 
moisture and vegetation optical depth retrieval using the Microwave Po-
larization Difference Index. IEEE Trans. Geosci. Remote Sens. 39:1643–
1654. doi:10.1109/36.942542

Palecki, M.A., and P.Ya. Groisman. 2011. Observing climate at high elevations 
using United States Climate Reference Network approaches. J. Hydrome-
teorol. 12:1137–1143. doi:10.1175/2011JHM1335.1

Palmer, W.C. 1965. Meteorological drought. Res. Pap. 45. U.S. Weather Bureau, 
Washington, DC.

Pan, H.-L., and L. Mahrt. 1987. Interaction between soil hydrology and boundary-
layer development. Boundary-Layer Meteorol. 38:185–202. doi:10.1007/
BF00121563

Pan, Y., J.M. Melillo, A.D. McGuire, D.W. Kicklighter, L.F. Pitelka, K. Hibbard, 
et al. 1998. Modeled responses of terrestrial ecosystems to elevated atmo-
spheric CO2: A comparison of simulations by the biogeochemistry models 
of the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP). 
Oecologia 114:389–404. doi:10.1007/s004420050462

Parton, W.J., M. Hartman, D. Ojima, and D. Schimel. 1998. DAYCENT and 
its land surface submodel: Description and testing. Global Planet. Change 
19:35–48. doi:10.1016/S0921-8181(98)00040-X

Parton, W.J., D.S. Schimel, C.V. Cole, and D.S. Ojima. 1987. Analysis of factors 
controlling soil organic matter levels in Great Plains grasslands. Soil Sci. Soc. 
Am. J. 51:1173. doi:10.2136/sssaj1987.03615995005100050015x

Parrens, M., E. Zakharova, S. Lafont, J.-C. Calvet, Y. Kerr, W. Wagner, and J.-P. 
Wigneron. 2012. Comparing soil moisture retrievals from SMOS and AS-
CAT over France. Hydrol. Earth Syst. Sci. 16:423–440. doi:10.5194/hess-
16-423-2012

Pauwels, V.R.N., R. Hoeben, N.E.C. Verhoest, and F.P. De Troch. 2001. The im-
portance of the spatial patterns of remotely sensed soil moisture in the im-
provement of discharge predictions for small-scale basins through data as-
similation. J. Hydrol. 251:88–102. doi:10.1016/S0022-1694(01)00440-1

Peel, M.C., B.L. Finlayson, and T.A. McMahon. 2007. Updated world map of the 
Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11:1633–
1644. doi:10.5194/hess-11-1633-2007

Peled, E., E. Dutra, P. Viterbo, and A. Angert. 2009. Technical note: Comparing 
and ranking soil-moisture indices performance over Europe, through re-
mote-sensing of vegetation. Hydrol. Earth Syst. Sci. Discuss. 6:6247–6264. 
doi:10.5194/hessd-6-6247-2009

Phene, C.J., G.J. Hoffman, and S.L. Rawlins. 1971. Measuring soil matric po-
tential in situ by sensing heat dissipation within a porous body: I. Theory 
and sensor construction. Soil Sci. Soc. Am. J. 35:27–33. doi:10.2136/
sssaj1971.03615995003500010015x

Piles, M., A. Camps, M. Vall-Llossera, I. Corbella, R. Panciera, C. Rudiger, et 
al. 2011. Downscaling SMOS-derived soil moisture using MODIS vis-
ible/infrared data. IEEE Trans. Geosci. Remote Sens. 49:3156–3166. 
doi:10.1109/TGRS.2011.2120615

Pratt, D.A., and C.D. Ellyett. 1979. The thermal inertia approach to map-
ping of soil moisture and geology. Remote Sens. Environ. 8:151–168. 
doi:10.1016/0034-4257(79)90014-2

Prentice, I., W. Cramer, S. Harrison, R. Leemans, R. Monserud, and A. Solomon. 
1992. A global biome model based on plant physiology and dominance, soil 
properties and climate. J. Biogeogr. 19:117–134. doi:10.2307/2845499

Purcell, L.C., T.R. Sinclair, and R.W. McNew. 2003. Drought avoidance assess-
ment for summer annual crops using long-term weather data. Agron. J. 
95:1566–1576. doi:10.2134/agronj2003.1566

Qu, Y., and C.J. Duffy. 2007. A semidiscrete finite volume formulation for 
multiprocess watershed simulation. Water Resour. Res. 43:W08419. 
doi:10.1029/2006WR005752

Randerson, J.T., F.M. Hoffman, P.E. Thornton, N.M. Mahowald, K. Lindsay, Y.-
H. Lee, et al. 2009. Systematic assessment of terrestrial biogeochemistry 
in coupled climate–carbon models. Global Change Biol. 15:2462–2484. 
doi:10.1111/j.1365-2486.2009.01912.x

Reece, C.F. 1996. Evaluation of a line heat dissipation sensor for measuring 
soil matric potential. Soil Sci. Soc. Am. J. 60:1022–1028. doi:10.2136/
sssaj1996.03615995006000040009x

Reichle, R.H., W.T. Crow, R.D. Koster, J.S. Kimball, and G.J.M. De Lannoy. 
2012. SMAP Level 4 Surface and Root Zone Soil Moisture (L4_SM) 
data product algorithm theoretical basis document. Global Modeling and 
Assimilation Office, NASA Goddard Space Flight Ctr., Greenbelt, MD. 
http://smap.jpl.nasa.gov/files/smap2/L4_SM_InitRel_v1.pdf (accessed 
11 June 2013).

Reichle, R.H., R.D. Koster, J. Dong, and A.A. Berg. 2004. Global soil mois-
ture from satellite observations, land surface models, and ground data: 
Implications for data assimilation. J. Hydrometeorol. 5:430–442. 
doi:10.1175/1525-7541(2004)005<0430:GSMFSO>2.0.CO;2

Reichstein, M., A. Rey, A. Freibauer, J. Tenhunen, R. Valentini, J. Banza, et al. 
2003. Modeling temporal and large-scale spatial variability of soil respira-

http://dx.doi.org/10.1029/2008JD011077
http://dx.doi.org/10.1007/BF00119116
http://dx.doi.org/10.1175/1520-0493(1969)097%3C0739%3ACATOC%3E2.3.CO%3B2
http://dx.doi.org/10.1175/JTECH1976.1
http://dx.doi.org/10.5194/hess-15-999-2011
http://dx.doi.org/10.1016/j.rse.2010.05.007
http://dx.doi.org/10.1109/TGRS.2011.2175000
http://dx.doi.org/10.1109/TGRS.2011.2175000
http://dx.doi.org/10.1016/j.jhydrol.2010.07.012
http://knowledge.sagepub.com/view/hdbk_remotesense/n6.xml
http://onlinelibrary.wiley.com/doi/10.1029/2000JD900058/abstract
http://dx.doi.org/10.1029/2000WR000209
http://dx.doi.org/10.1890/0012-9615(2001)071[0557%3AAMFSVD]2.0.CO%3B2
http://dx.doi.org/10.1007/s00704-011-0460-6
http://dx.doi.org/10.1016/j.agrformet.2005.07.012
http://www.jstor.org/discover/10.2307/1942028?uid=3739976&uid=2&uid=4&uid=3739256&sid=21102604494503
http://dx.doi.org/10.1109/TGRS.2002.808243
http://dx.doi.org/10.1109/TGRS.2012.2182775
http://dx.doi.org/10.1109/TGRS.2012.2182775
http://dx.doi.org/10.1016/0038-0717(83)90010-X
http://dx.doi.org/10.1016/0038-0717(83)90010-X
http://dx.doi.org/10.1109/36.942542
http://dx.doi.org/10.1175/2011JHM1335.1
http://dx.doi.org/10.1007/BF00121563
http://dx.doi.org/10.1007/BF00121563
http://dx.doi.org/10.1007/s004420050462
http://dx.doi.org/10.1016/S0921-8181(98)00040-X
http://dx.doi.org/10.2136/sssaj1987.03615995005100050015x
http://dx.doi.org/10.5194/hess-16-423-2012
http://dx.doi.org/10.5194/hess-16-423-2012
http://dx.doi.org/10.1016/S0022-1694(01)00440-1
http://dx.doi.org/10.5194/hess-11-1633-2007
http://dx.doi.org/10.5194/hessd-6-6247-2009
http://dx.doi.org/10.2136/sssaj1971.03615995003500010015x
http://dx.doi.org/10.2136/sssaj1971.03615995003500010015x
http://dx.doi.org/10.1109/TGRS.2011.2120615
http://dx.doi.org/10.1016/0034-4257(79)90014-2
http://dx.doi.org/10.2307/2845499
https://www.agronomy.org/publications/aj/abstracts/95/6/1566
http://dx.doi.org/10.1029/2006WR005752
http://dx.doi.org/10.1111/j.1365-2486.2009.01912.x
http://dx.doi.org/10.2136/sssaj1996.03615995006000040009x
http://dx.doi.org/10.2136/sssaj1996.03615995006000040009x
http://dx.doi.org/10.1175/1525-7541(2004)005%3C0430%3AGSMFSO%3E2.0.CO%3B2


www.soils.org/publications/sssaj	 6

tion from soil water availability, temperature and vegetation productivity in-
dices. Global Biogeochem. Cycles 17:1104. doi:10.1029/2003GB002035

Ren, D., L.M. Leslie, and D.J. Karoly. 2008. Sensitivity of an ecological model to 
soil moisture simulations from two different hydrological models. Meteo-
rol. Atmos. Phys. 100:87–99. doi:10.1007/s00703-008-0297-4

Richards, L.A. 1931. Capillary conduction of liquids through porous mediums. 
Physics 1:318–333. doi:10.1063/1.1745010

Rivera Villarreyes, C.A., G. Baroni, and S.E. Oswald. 2011. Integral quantifica-
tion of seasonal soil moisture changes in farmland by cosmic-ray neutrons. 
Hydrol. Earth Syst. Sci. 15:3843–3859. doi:10.5194/hess-15-3843-2011

Robinson, D.A., C.S. Campbell, J.W. Hopmans, B.K. Hornbuckle, S.B. Jones, R. 
Knight, et al. 2008. Soil moisture measurement for ecological and hydro-
logical watershed-scale observatories: A review. Vadose Zone J. 7:358–389. 
doi:10.2136/vzj2007.0143

Robock, A., K. Ya Vinnikov, C.A. Schlosser, N.A. Speranskaya, and Y. Xue. 1995. 
Use of midlatitude soil moisture and meteorological observations to validate 
soil moisture simulations with biosphere and bucket models. J. Clim. 8:15–
35. doi:10.1175/1520-0442(1995)008<0015:UOMSMA>2.0.CO;2

Robock, A., K.Y. Vinnikov, G. Srinivasan, J.K. Entin, S.E. Hollinger, N.A. Speran-
skaya, et al. 2000. The global soil moisture data bank. Bull. Am. Meteorol. 
Soc. 81:1281–1299. doi:10.1175/1520-0477(2000)081<1281:TGSMDB
>2.3.CO;2

Robock, A., M. Mu, K. Vinnikov, I.V. Trofimova, and T.I. Adamenko. 2005. 
Forty-five years of observed soil moisture in the Ukraine: No summer desic-
cation (yet). Geophys. Res. Lett. 32:L03401. doi:10.1029/2004GL021914

Rodriguez-Alvarez, N., X. Bosch-Lluis, A. Camps, M. Vall-Ilossera, E. Valen-
cia, J.F. Marchan-Hernandez, and I. Ramos-Perez. 2009. Soil moisture 
retrieval using GNSS-R techniques: Experimental results over a bare soil 
field. IEEE Trans. Geosci. Remote Sens. 47:3616–3624. doi:10.1109/
TGRS.2009.2030672

Rodriguez-Alvarez, N., X. Bosch-Lluis, A. Camps, A. Aguasca, M. Vall-llossera, 
E. Valencia, et al. 2011a. Review of crop growth and soil moisture monitor-
ing from a ground-based instrument implementing the interference pattern 
GNSS-R technique. Radio Sci. 46:RS0C03. doi:10.1029/2011RS004680

Rodriguez-Alvarez, N., A. Camps, M. Vall-Ilossera, X. Bosch-Lluis, A. Monerris, 
I. Ramos-Perez, et al. 2011b. Land geophysical parameters retrieval using 
the interference pattern GNSS-R technique. IEEE Trans. Geosci. Remote 
Sens. 49:71–84. doi:10.1109/TGRS.2010.2049023

Rosolem, R., W.J. Shuttleworth, M. Zreda, T.E. Franz, X. Zeng, and S.A. Kurc. 
2013. The effect of atmospheric water vapor on the cosmic-ray soil moisture 
signal. J. Hydrometeorol. (in press). doi:10.1175/JHM-D-12-0120.1

Sayde, C., C. Gregory, M. Gil-Rodriguez, N. Tufillaro, S. Tyler, N. van de Giesen, 
et al. 2010. Feasibility of soil moisture monitoring with heated fiber optics. 
Water Resour. Res. 46:W06201. doi:10.1029/2009WR007846

Schaap, M.G., F.J. Leij, and M.Th. van Genuchten. 2001. ROSETTA: A com-
puter program for estimating soil hydraulic parameters with hierarchical 
pedotransfer functions. J. Hydrol. 251:163–176. doi:10.1016/S0022-
1694(01)00466-8

Schaefer, G.L., M.H. Cosh, and T.J. Jackson. 2007. The USDA Natural Resources 
Conservation Service Soil Climate Analysis Network (SCAN). J. Atmos. 
Ocean. Technol. 24:2073–2077. doi:10.1175/2007JTECHA930.1

Scheffer, M., M. Holmgren, V. Brovkin, and M. Claussen. 2005. Synergy between 
small- and large-scale feedbacks of vegetation on the water cycle. Global 
Change Biol. 11:1003–1012. doi:10.1111/j.1365-2486.2005.00962.x

Schmugge, T., P. Gloersen, T. Wilheit, and F. Geiger. 1974. Remote sensing of 
soil moisture with microwave radiometers. J. Geophys. Res. 79:317–323. 
doi:10.1029/JB079i002p00317

Schmugge, T., and T. Jackson. 1994. Mapping surface soil moisture with mi-
crowave radiometers. Meteorol. Atmos. Phys. 54:213–223. doi:10.1007/
BF01030061

Schneider, J.M., D.K. Fisher, R.L. Elliott, G.O. Brown, and C.P. Bahrmann. 
2003. Spatiotemporal variations in soil water: First results from the ARM 
SGP CART Network. J. Hydrometeorol. 4:106–120. doi:10.1175/1525-
7541(2003)004<0106:SVISWF>2.0.CO;2

Schroeder, J.L., W.S. Burgett, K.B. Haynie, I. Sonmez, G.D. Skwira, A.L. Doggett, 
and J.W. Lipe. 2005. The West Texas Mesonet: A technical overview. J. At-
mos. Ocean. Technol. 22:211–222. doi:10.1175/JTECH-1690.1

Scott, B.L., T.E. Ochsner, B.G. Illston, C.A. Fiebrich, J.B. Basara, and A.J. Suther-
land. 2013. New soil property database improves Oklahoma Mesonet 
soil moisture estimates. J. Atmos. Ocean. Tech. (in press). doi:10.1175/

JTECH-D-13-00084.1
Scott, R.W., E.C. Krug, S.L. Burch, C.R. Mitdarfer, and P.F. Nelson. 2010. Inves-

tigations of soil moisture under sod in east-central Illinois. Rep. Invest. 119. 
Illinois State Water Surv., Champaign. 

Selker, J.S., L. Thevenaz, H. Huwald, A. Mallet, W. Luxemburg, N. van de Giesen, 
et al. 2006. Distributed fiber-optic temperature sensing for hydrologic sys-
tems. Water Resour. Res. 42:W12202. doi:10.1029/2006WR005326

Sellers, P., R. Dickinson, D. Randall, A. Betts, F. Hall, J. Berry, et al. 1997. Model-
ing the exchanges of energy, water, and carbon between continents and the 
atmosphere. Science 275:502–509. doi:10.1126/science.275.5299.502

Sellers, P.J., Y. Mintz, Y.C. Sud, and A. Dalcher. 1986. A simple biosphere model 
(SIB) for use within general circulation models. J. Atmos. Sci. 43:505–531. 
doi:10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2

Seneviratne, S.I., T. Corti, E.L. Davin, M. Hirschi, E.B. Jaeger, I. Lehner, et al. 
2010. Investigating soil moisture–climate interactions in a changing climate: 
A review. Earth Sci. Rev. 99:125–161. doi:10.1016/j.earscirev.2010.02.004

Seuffert, G., H. Wilker, P. Viterbo, M. Drusch, and J.-F. Mahfouf. 2004. The us-
age of screen-level parameters and microwave brightness temperature for 
soil moisture analysis. J. Hydrometeorol. 5:516–531. doi:10.1175/1525-
7541(2004)005<0516:TUOSPA>2.0.CO;2

Shao, Y., and A. Henderson-Sellers. 1996. Modeling soil moisture: A Project for 
Intercomparison of Land Surface Parameterization Schemes Phase 2(b): 
GEWEX Continental-Scale International Project (GCIP). J. Geophys. Res. 
101(D3):7227–7250. doi:10.1029/95JD03275

Simelton, E., E.G. Fraser, M. Termansen, T. Benton, S. Gosling, A. South, et al. 
2012. The socioeconomics of food crop production and climate change vul-
nerability: A global scale quantitative analysis of how grain crops are sensi-
tive to drought. Food Secur. 4:163–179. doi:10.1007/s12571-012-0173-4

Simpson, J.A. 2000. The cosmic ray nucleonic component: The invention 
and scientific uses of the neutron monitor. Space Sci. Rev. 93:11–32. 
doi:10.1023/A:1026567706183

Sitch, S., B. Smith, I.C. Prentice, A. Arneth, A. Bondeau, W. Cramer, et al. 2003. 
Evaluation of ecosystem dynamics, plant geography and terrestrial carbon 
cycling in the LPJ dynamic global vegetation model. Global Change Biol. 
9:161–185. doi:10.1046/j.1365-2486.2003.00569.x

Small, E.E., K.M. Larson, and J.J. Braun. 2010. Sensing vegetation 
growth with reflected GPS signals. Geophys. Res. Lett. 37:L12401. 
doi:10.1029/2010GL042951

Smith, A.B., J.P. Walker, A.W. Western, R.I. Young, K.M. Ellett, R.C. Pipunic, et 
al. 2012. The Murrumbidgee Soil Moisture Monitoring Network data set. 
Water Resour. Res. 48:W07701. doi:10.1029/2012wr011976

Song, Y., M.B. Kirkham, J.M. Ham, and G.J. Kluitenberg. 1999. Dual probe heat 
pulse technique for measuring soil water content and sunflower water up-
take. Soil Tillage Res. 50:345–348. doi:10.1016/S0167-1987(99)00014-8

Sridhar, V., K.G. Hubbard, J. You, and E.D. Hunt. 2008. Development of the 
soil moisture index to quantify agricultural drought and its user friendli-
ness in severity–area–duration assessment. J. Hydrometeorol. 9:660–676. 
doi:10.1175/2007JHM892.1

Steele-Dunne, S.C., M.M. Rutten, D.M. Krzeminska, M. Hausner, S.W. Tyler, J. Selker, 
et al. 2010. Feasibility of soil moisture estimation using passive distributed temper-
ature sensing. Water Resour. Res. 46:W03534. doi:10.1029/2009WR008272

Striegl, A.M., and S.P. Loheide II. 2012. Heated distributed temperature sens-
ing for field scale soil moisture monitoring. Ground Water 50:340–347. 
doi:10.1111/j.1745-6584.2012.00928.x

Su, Z., J. Wen, L. Dente, R. van der Velde, L. Wang, Y. Ma, et al. 2011. The Ti-
betan Plateau observatory of plateau scale soil moisture and soil tempera-
ture (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite 
and model products. Hydrol. Earth Syst. Sci. 15:2303–2316. doi:10.5194/
hess-15-2303-2011

Sutinen, R., P. Hänninen, and A. Venäläinen. 2008. Effect of mild winter events 
on soil water content beneath snowpack. Cold Reg. Sci. Technol. 51: 56–
67. doi:10.1016/j.coldregions.2007.05.014

Suyker, A.E., S.B. Verma, and G.G. Burba. 2003. Interannual variability in net 
CO2 exchange of a native tallgrass prairie. Global Change Biol. 9:255–265. 
doi:10.1046/j.1365-2486.2003.00567.x

Svoboda, M., D. LeComte, M. Hayes, R. Heim, K. Gleason, J. Angel, et al. 2002. 
The drought monitor. Bull. Am. Meteorol. Soc. 83:1181–1190.

Tarara, J.M., and J.M. Ham. 1997. Measuring soil water content in the labora-
tory and field with dual-probe heat-capacity sensors. Agron. J. 89:535–542. 
doi:10.2134/agronj1997.00021962008900040001x

http://onlinelibrary.wiley.com/doi/10.1029/2003GB002035/abstract;jsessionid=F4F6694ED526BC27627CFC96E1CAAE95.d03t03
http://dx.doi.org/10.1007/s00703-008-0297-4
http://dx.doi.org/10.1063/1.1745010
http://dx.doi.org/10.5194/hess-15-3843-2011
http://dx.doi.org/10.2136/vzj2007.0143
http://dx.doi.org/10.1175/1520-0442(1995)008%3C0015%3AUOMSMA%3E2.0.CO%3B2
http://dx.doi.org/10.1175/1520-0477(2000)081%3C1281%3ATGSMDB%3E2.3.CO%3B2
http://dx.doi.org/10.1175/1520-0477(2000)081%3C1281%3ATGSMDB%3E2.3.CO%3B2
http://onlinelibrary.wiley.com/doi/10.1029/2004GL021914/abstract
http://dx.doi.org/10.1109/TGRS.2009.2030672
http://dx.doi.org/10.1109/TGRS.2009.2030672
http://dx.doi.org/10.1029/2011RS004680
http://dx.doi.org/10.1109/TGRS.2010.2049023
http://journals.ametsoc.org/doi/abs/10.1175/JHM-D-12-0120.1
http://dx.doi.org/10.1029/2009WR007846
http://dx.doi.org/10.1016/S0022-1694(01)00466-8
http://dx.doi.org/10.1016/S0022-1694(01)00466-8
http://dx.doi.org/10.1175/2007JTECHA930.1
http://dx.doi.org/10.1111/j.1365-2486.2005.00962.x
http://dx.doi.org/10.1029/JB079i002p00317
http://dx.doi.org/10.1007/BF01030061
http://dx.doi.org/10.1007/BF01030061
http://dx.doi.org/10.1175/1525-7541(2003)004%3C0106%3ASVISWF%3E2.0.CO%3B2
http://dx.doi.org/10.1175/1525-7541(2003)004%3C0106%3ASVISWF%3E2.0.CO%3B2
http://dx.doi.org/10.1175/JTECH-1690.1
http://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-13-00084.1
http://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-13-00084.1
http://dx.doi.org/10.1029/2006WR005326
http://dx.doi.org/10.1126/science.275.5299.502
http://dx.doi.org/10.1175/1520-0469(1986)043%3C0505%3AASBMFU%3E2.0.CO%3B2
http://dx.doi.org/10.1016/j.earscirev.2010.02.004
http://dx.doi.org/10.1175/1525-7541(2004)005%3C0516%3ATUOSPA%3E2.0.CO%3B2
http://dx.doi.org/10.1175/1525-7541(2004)005%3C0516%3ATUOSPA%3E2.0.CO%3B2
http://dx.doi.org/10.1029/95JD03275
http://dx.doi.org/10.1007/s12571-012-0173-4
http://dx.doi.org/10.1023/A%3A1026567706183
http://dx.doi.org/10.1046/j.1365-2486.2003.00569.x
http://dx.doi.org/10.1029/2010GL042951
http://onlinelibrary.wiley.com/doi/10.1029/2012WR011976/abstract
http://dx.doi.org/10.1016/S0167-1987(99)00014-8
http://dx.doi.org/10.1175/2007JHM892.1
http://dx.doi.org/10.1029/2009WR008272
http://dx.doi.org/10.1111/j.1745-6584.2012.00928.x
http://dx.doi.org/10.5194/hess-15-2303-2011
http://dx.doi.org/10.5194/hess-15-2303-2011
http://www.sciencedirect.com/science/article/pii/S0165232X07001267
http://dx.doi.org/10.1046/j.1365-2486.2003.00567.x
http://dx.doi.org/10.2134/agronj1997.00021962008900040001x


6	 Soil Science Society of America Journal

Topp, G.C. 2006. TDR reflections: My thoughts and experiences on TDR. In: 
TDR 2006: 3rd International Symposium  and Workshop on Time Do-
main  Reflectometry for Innovative  Soils Applications, West Lafayette, IN. 
17–20 Sept. 2006. Geotech. Eng., Purdue Univ., West Lafayette, IN. Paper 
B1. https://engineering.purdue.edu/TDR/Papers/B1_Topp.pdf.

Topp, G.C., J.L. Davis, and A.P. Annan. 1980. Electromagnetic determination of 
soil water content: Measurements in coaxial transmission lines. Water Re-
sour. Res. 16:574–582. doi:10.1029/WR016i003p00574

Torres, G.M., R.P. Lollato, and T.E. Ochsner. 2013. Comparison of drought prob-
ability assessments based on atmospheric water deficit and soil water deficit. 
Agron. J. 105:428–436. doi:10.2134/agronj2012.0295

Tyler, S.W., J.S. Selker, M.B. Hausner, C.E. Hatch, T. Torgersen, C.E. Thodal, 
and S.G. Schladow. 2009. Environmental temperature sensing using Ra-
man spectra DTS fiber-optic methods. Water Resour. Res. 45:W00D23. 
doi:10.1029/2008WR007052

Ulaby, F.T., M.C. Dobson, and D.R. Brunfeldt. 1983. Improvement of moisture 
estimation accuracy of vegetation-covered soil by combined active/passive 
microwave remote sensing. IEEE Trans. Geosci. Remote Sens. GE-21:300–
307. doi:10.1109/TGRS.1983.350557

VEMAP Members. 1995. Vegetation/Ecosystem Modeling and Analysis Project: 
Comparing biogeography and biogeochemistry models in a continental-
scale study of terrestrial ecosystem responses to climate change and CO2 dou-
bling. Global Biogeochem. Cycles 9:407–437. doi:10.1029/95GB02746

Verhoef, A. 1995. Surface energy balance of shrub vegetation in the Sahel. Ph.D. 
diss. Wageningen Agric. Univ., Wageningen, the Netherlands.

Verhoef, A., and S.J. Allen. 2000. A SVAT scheme describing energy and CO2 flux-
es for multi-component vegetation: Calibration and test for a Sahelian sa-
vannah. Ecol. Modell. 127:245–267. doi:10.1016/S0304-3800(99)00213-6

Verhoef, A., S.J. Allen, and C.R. Lloyd. 1999. Seasonal variation of surface energy bal-
ance over two Sahelian surfaces. Int. J. Climatol. 19:1267–1277. doi:10.1002/
(SICI)1097-0088(199909)19:11<1267::AID-JOC418>3.0.CO;2-S

Vinnikov, K.Y., A. Robock, S. Qiu, and J.K. Entin. 1999. Optimal design of sur-
face networks for observation of soil moisture. J. Geophys. Res. 104:19743–
19749. doi:10.1029/1999JD900060

Wagner, W., G. Bloschl, P. Pampaloni, J.C. Calvet, B. Bizzarri, J.P. Wigneron, and Y. 
Kerr. 2007. Operational readiness of microwave remote sensing of soil moisture 
for hydrologic applications. Nord. Hydrol. 38:1–20. doi:10.2166/nh.2007.029

Wagner, W., S. Hahn, R. Kidd, T. Melzer, Z. Bartalis, S. Hasenauer, et al. 2013. The 
ASCAT soil moisture product: A review of its specifications, validation re-
sults, and emerging applications. Meteorol. Z. 22:5–33. doi:10.1127/0941-
2948/2013/0399

Wagner, W., G. Lemoine, and H. Rott. 1999. A method for estimating soil mois-
ture from ERS scatterometer and soil data. Remote Sens. Environ. 70:191–
207. doi:10.1016/S0034-4257(99)00036-X

Wagner, W., K. Scipal, C. Pathe, D. Gerten, W. Lucht, and B. Rudolf. 2003. Evalu-
ation of the agreement between the first global remotely sensed soil mois-

ture data with model and precipitation data. J. Geophys. Res. 108:4611. 
doi:10.1029/2003JD003663

Pan, W., R.P. Boyles, J.G. White, and J.L. Heitman. 2012. Characterizing soil 
physical properties for soil moisture monitoring with the North Carolina 
Environment and Climate Observing Network. J. Atmos. Ocean. Technol. 
29:933–943. doi:10.1175/JTECH-D-11-00104.1

Weiss, J.D. 2003. Using fiber optics to detect moisture intrusion into a landfill cap 
consisting of a vegetative soil barrier. J. Air Waste Manage. Assoc. 53:1130–
1148. doi:10.1080/10473289.2003.10466268

Western, A.W., and G. Blöschl. 1999. On the spatial scaling of soil moisture. J. 
Hydrol. 217:203–224. doi:10.1016/S0022-1694(98)00232-7

Xu, L., D.D. Baldocchi, and J. Tang. 2004. How soil moisture, rain pulses, and 
growth alter the response of ecosystem respiration to temperature. Global 
Biogeochem. Cycles 18:GB4002. doi:10.1029/2004GB002281

Yang, H., K. Auerswald, Y. Bai, and X. Han. 2011. Complementarity in water 
sources among dominant species in typical steppe ecosystems of Inner Mon-
golia, China. Plant Soil 340:303–313. doi:10.1007/s11104-010-0307-4

Yang, K., T. Koike, I. Kaihotsu, and J. Qin. 2009. Validation of a dual-pass microwave 
land data assimilation system for estimating surface soil moisture in semiarid 
regions. J. Hydrometeorol. 10:780–793. doi:10.1175/2008JHM1065.1

Zavorotny, V., K. Larson, J. Braun, E. Small, E. Gutmann, and A. Bilich. 2010. A 
physical model for GPS multipath caused by land reflections: Toward bare 
soil moisture retrievals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 
3:100–110. doi:10.1109/JSTARS.2009.2033608

Zehe, E., R. Becker, A. Bárdossy, and E. Plate. 2005. Uncertainty of simu-
lated catchment runoff response in the presence of threshold processes: 
Role of initial soil moisture and precipitation. J. Hydrol. 315:183–202. 
doi:10.1016/j.jhydrol.2005.03.038

Zhao, L., K. Yang, J. Qin, Y. Chen, W. Tang, C. Montzka, et al. 2013. Spatio-
temporal analysis of soil moisture observations within a Tibetan mesoscale 
area and its implication to regional soil moisture measurements. J. Hydrol. 
482:92–104. doi:10.1016/j.jhydrol.2012.12.033

Zreda, M., D. Desilets, T.P.A. Ferré, and R.L. Scott. 2008. Measuring soil mois-
ture content non-invasively at intermediate spatial scale using cosmic-ray 
neutrons. Geophys. Res. Lett. 35:L21402. doi:10.1029/2008GL035655

Zreda, M., W.J. Shuttleworth, X. Zeng, C. Zweck, D. Desilets, T. Franz, and R. Ro-
solem. 2012. COSMOS: The COsmic-ray Soil Moisture Observing System. 
Hydrol. Earth Syst. Sci. 16:4079–4099. doi:10.5194/hess-16-4079-2012

Zreda, M., X. Zeng, J. Shuttleworth, C. Zweck, T. Ferré, T. Franz, et al. 2011. 
Cosmic-ray neutrons, an innovative method for measuring area-average soil 
moisture. GEWEX News 21(3):6–10.

Zweck, C., M. Zreda, and D. Desilets. 2011. Empirical confirmation of the sub-
kilometer footprint of cosmic-ray soil moisture probes. In: Abstracts, 8th 
EGU General Assembly 2011, Vienna, Austria. 3–8 Apr. 2011. Copernicus 
Gesellschaft, Göttingen, Germany.

http://dx.doi.org/10.1029/WR016i003p00574
https://www.agronomy.org/publications/aj/abstracts/105/2/428
http://onlinelibrary.wiley.com/doi/10.1029/2008WR007052/abstract
http://dx.doi.org/10.1109/TGRS.1983.350557
http://dx.doi.org/10.1029/95GB02746
http://dx.doi.org/10.1016/S0304-3800(99)00213-6
http://dx.doi.org/10.1002/(SICI)1097-0088(199909)19%3A11%3C1267%3A%3AAID-JOC418%3E3.0.CO%3B2-S
http://dx.doi.org/10.1002/(SICI)1097-0088(199909)19%3A11%3C1267%3A%3AAID-JOC418%3E3.0.CO%3B2-S
http://dx.doi.org/10.1029/1999JD900060
http://dx.doi.org/10.2166/nh.2007.029
http://dx.doi.org/10.1127/0941-2948/2013/0399
http://dx.doi.org/10.1127/0941-2948/2013/0399
http://dx.doi.org/10.1016/S0034-4257(99)00036-X
http://dx.doi.org/10.1029/2003JD003663
http://dx.doi.org/10.1175/JTECH-D-11-00104.1
http://dx.doi.org/10.1080/10473289.2003.10466268
http://dx.doi.org/10.1016/S0022-1694(98)00232-7
http://dx.doi.org/10.1007/s11104-010-0307-4
http://dx.doi.org/10.1175/2008JHM1065.1
http://dx.doi.org/10.1109/JSTARS.2009.2033608
http://www.sciencedirect.com/science/article/pii/S0022169405001873
http://www.sciencedirect.com/science/article/pii/S002216941201116X
http://dx.doi.org/10.1029/2008GL035655
http://dx.doi.org/10.5194/hess-16-4079-2012

