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[1] Soil hydraulic properties (SHPs) play an important role in land‐surface models, but
their spatial distribution is poorly known, and it is not feasible to make field
measurements of SHPs everywhere they are needed. In addition, the scale SHPs are
measured on (10 cm) is substantially smaller than the scale at which land‐surface models
are run (>1 km). As a result, land‐surface models need landscape hydraulic properties
(LHPs), not SHPs. We present a method for identifying LHPs from MODIS surface
temperatures. We calibrated LHPs in the Noah land‐surface model using MODIS surface
temperatures in 2005 at 14 sites from the Atmospheric Radiation Measurement Program
(ARM) using locally observed forcing data from 2005. We then used observed flux data
during this same time period for model verification. Next, we determined LHPs from
MODIS surface temperature at five sites using High Resolution Land Data Assimilation
forcing data from 2002. We then used these LHPS to run Noah with 2005 ARM forcing
data and compared the output to the same observed 2005 fluxes. Fitting LHPs to
MODIS data decreases the error in modeled latent heat flux from 98 W/m2 to 67 W/m2.
Fitting LHPs to these same latent heat flux measurements decreases the error to 50 W/m2.
Therefore, two thirds of the parameter estimation improvement from calibration to in situ
flux data can be achieved using remotely sensed surface temperature. These results are
insensitive to errors in other parameters. For example, changing albedo by 0.1 changes the
saturated conductivity (Ks) by 10% and the van Genuchten “m” parameter by 1%.
However, changing minimum canopy resistance by 40 s/m produced a significant but
mutually compensating change in both Ks and “m.”

Citation: Gutmann, E. D., and E. E. Small (2010), A method for the determination of the hydraulic properties of soil from
MODIS surface temperature for use in land‐surface models, Water Resour. Res., 46, W06520, doi:10.1029/2009WR008203.

1. Introduction

[2] Soil hydraulic properties (SHPs) are an important
component of land‐surface models. SHPs control the
movement of water in the soil, including infiltration and
drainage rates. This, in turn, controls the surface and root
zone soil moisture, which plays a critical role in the parti-
tioning of available energy (net radiation minus ground heat
flux) into evaporation and sensible heat flux. These fluxes
are important in climate and weather forecasting [Betts et
al., 2003; Koster et al., 2004], while the estimation of
infiltration is important to flood forecasting and regional
water balance modeling. In addition, Seneviratne et al.
[2006] suggested that interactions between the land sur-
face and the atmosphere may drive of much of the climatic
variability predicted for Europe in the next 100 years.
[3] Current methods of estimating globally distributed

SHPs for land‐surface models are inaccurate [Gutmann and
Small, 2005]. SHPs in land‐surface models are commonly

estimated based on the assumption that SHPs are related to
soil texture [e.g., Chen and Dudhia, 2001; Bonan et al.,
2002; Sellers et al., 1996]. Soil texture is commonly used
because global maps of texture exist. However, soil texture
has been shown to be a poor predictor of SHPs [Soet and
Stricker, 2003; Gutmann and Small, 2005, 2007]. In addi-
tion, global soil texture maps are at a much coarser spatial
resolution (e.g., 1°) [Reynolds et al. 1999] than the actual
spatial variations in SHPs (often 10 s cm.)
[4] Because texture has been widely used, it is generally

accepted as a proxy for SHPs, and most land‐surface models
expect the user to supply soil texture instead of SHPs
[Sellers et al., 1996; Bonan et al., 2002; Chen and Dudhia,
2001]. This leads to studies such as that by Santanello et al.
[2007] that attempt to predict soil texture from remotely
sensed data instead of a more direct estimate of SHPs. Here,
we propose that the land‐surface modeling community
consider moving away from this use of texture because it
limits the variability of SHPs.
[5] Site‐specific measurements of SHPs are difficult to

make and are not made at a scale appropriate for use in land‐
surface models. SHPs are typically measured over a 100 cm2

area either in the field [Simunek and vanGenuchten, 1997]
or in the lab [Vandam et al., 1992; Stolte et al., 1994].
However, land‐surface models are typically run with a
single grid cell width of 1–100 km. As a result, different
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processes may influence the effective SHPs that should be
used in land‐surface models. Hereafter we will refer to
effective SHPs as used in land‐surface models as landscape
hydraulic properties (LHPs).
[6] The effect of scale on hydraulic parameters has been

recognized as an important factor by many authors [e.g.,
Eching et al., 1994; Zhu and Mohanty, 2003; Vrugt et al.,
2004; Duan et al., 2006]. Large‐scale LHPs are influ-
enced by processes not captured by small‐scale measure-
ments of SHPs. LHPs must account for the heterogeneity of
SHPs within the region being modeled [Zhu and Mohanty,
2003], as well as the influences of variability in topogra-
phy [Stieglitz et al., 1997; Stoeckli et al., 2007; Bedford and
Small, 2008; Kollet and Maxwell, 2008] and vegetation
[Bonan et al., 1993; Maayar and Chen, 2006]. Heteroge-
neity of SHPs within a grid cell is important because of the
nonlinear relationship between moisture content and
hydraulic conductivity. This nonlinearity means that the
average flux over an area with heterogenous SHPs will not
be the same as the flux over an area with averaged SHPs
[Zhu and Mohanty, 2003]. Topographic and vegetation
heterogeneity exacerbate this problem by concentrating the
inputs and outputs to and from the soil. Topography will
result in water flowing to the low points and preferentially
infiltrating in these locations. Vegetation heterogeneity will
lead to more water removal via transpiration in locations
with more vegetation. Additionally, soil flow processes not
measured at small scales may be important. Soil water will
preferentially flow through macropores [Nachabe, 1995]
and flow will be modified by caliche cements or other local
barriers to flow. This fits with recent results by van
Verseveld et al. [2009], which suggested that vertical flow
through the soil was probably dominated by preferential
flow with little interaction between the water and the soil
matrix.
[7] Because one cannot capture the large‐scale response

of a highly nonlinear system using the average of known
small‐scale parameters, it is necessary to derive large‐scale
parameters for the system at the scale of the model. Fortu-
nately, a variety of data useful for land‐surface modeling are
measured at larger scales. For example, the footprint of a
latent or sensible heat flux tower located 2 m above the
ground is typically several hundred meters across, with a
larger footprint for faster winds or higher towers. Addi-
tionally, satellites measure skin temperature at several spa-
tial length scales from 60 m to 8 km. It is also possible to
measure soil moisture from satellites at even larger scales
(25 km). Other researchers have examined the possibility of
determining LHPs from remotely sensed soil moisture
[Burke et al., 1998; Santanello et al., 2007; Pauwels et al.,
2009]. We focus on the determination of LHPs from
remotely sensed surface temperature because the scale of
measurement is appropriate for current and future high‐res-
olution weather forecasting and climate modeling (1–10 km)
[e.g., Leung et al. 2006].
[8] Numerous researchers have used surface temperature

to analyze surface hydraulic processes, but none have
looked at incorporating surface temperature in an inverse
framework to determine LHPs. Boulet et al. [2007] used a
time series of surface temperature to analyze vegetation
water stress and transpiration. Additionally, surface tem-
perature has been used in conjunction with a vegetation
index to infer soil moisture content [Gillies and Carlson,

1995]. This combination of surface temperature with a
vegetation index has also been used to disaggregate low‐
resolution microwave soil moisture estimates [Chauhan et
al., 2003]. The surface temperature vegetation index com-
bination has also been used to estimate evapotranspiration
[Friedl, 1996], and other studies have used evapotranspi-
ration to identify soil hydraulic properties [Feddes et al.,
1993]. However, nobody has combined these methods to
determine SHPs from surface temperature, probably because
the link between surface temperature and soil moisture or
evapotranspiration is indirect. Surface temperature is con-
trolled by many variables, including air temperature, solar
radiation, past temperature, as well as soil moisture through
its influence on latent heat flux/evapotranspiration (ET).
Because there is no direct link between surface temperature
and soil moisture, it is necessary to use an inverse procedure
to estimate LHPs from MODIS surface temperature data.
[9] This paper will begin with a description of the Noah

land‐surface model, the data sets used in this study, and the
inverse procedure itself. Then we will describe the three
specific experiments we performed; first, an inverse mod-
eling procedure with the best possible forcing data, second,
an inverse procedure using potentially degraded forcing data
that are available on a regional basis, and, finally, a sensi-
tivity test to look at the effect of errors in other model
parameters.

2. Methods

[10] We determined LHPs using an inverse procedure
based on that of Gutmann and Small [2007], as described in
section 2.7. We then performed three experiments to assess
these LHPs. In the first experiment, we ran the inverse
procedure at 14 sites (described in section 2.2) using
observed forcing data from 2004–2005 to drive the Noah
model (described in section 2.1) during the inverse proce-
dure. The observed forcing data are as follows: 2 m air
temperature, pressure and humidity, 10 m wind speed, and
downward shortwave and longwave radiation. We verified
these LHPs by comparing the model latent heat flux when
using these LHPs to the observed latent heat fluxes from
2005. In the second experiment, we ran the inverse proce-
dure at 5 of these sites for which we had High Resolution
Land Data Assimilation System (HRLDAS) [Chen et al.,
2007] forcing data (described in section 2.5) to drive the
model. For this experiment we spun up the model in 2001
and used 2002 for calibration, and we verified these LHPs
by spinning up the model with observed forcing in 2004 and
verifying with the same observed flux data from 2005 that
were used in the first experiment. During this verification
we ran the model using observed forcing data for the ARM
sites to maintain consistency between the observed verifi-
cation data and the model forcing. For the third experiment,
we tested the sensitivity of the inverse procedure by running
it after adding errors to the albedo, minimum canopy
resistance, and roughness length at one site. We then present
both the model output fluxes and derived LHPs as a function
of the errors in these model parameters.

2.1. Noah Model

[11] In this study, we used the Noah land‐surface model
[Chen and Dudhia, 2001; Ek et al., 2003]. The Noah land‐
surface model is a one‐dimensional model that calculates
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the flow of heat and moisture vertically within a multilayer
soil column and the exchange of heat and moisture to and
from the atmosphere. We used eight soil layers with a 5 cm
thick surface layer and layer thicknesses increasing to a
0.75 m bottom layer for a total soil column 2 m thick. The
soil hydraulic component of the model solves the diffusion
form of the Richards equation in one dimension (vertical)
and we used the van Genuchten [1980] model for the
relation between hydraulic head, moisture content, and
hydraulic conductivity, as in Gutmann and Small [2007]
(equations (1) and (2)).

 �ð Þ ¼ S�
1
m � 1

� �1
n
=� ð1Þ

K �ð Þ ¼ KsS
0:5 1� 1� S

1
m

h im� �2
; ð2Þ

where y(�) is the water potential as a function of moisture
content and K(�) is the hydraulic conductivity as a function
of moisture content, S = ���r

�s��r. The fundamental soil
hydraulic property parameters then are �, the soil moisture
content, �r, the residual moisture content, �s, the saturated
moisture content, Ks, the saturated hydraulic conductivity,
and a, n, and m, the curve fitting parameters related to the
pore size distribution. The parameter space for this model is
commonly limited by setting m = 1 − 1

n, and we also adopt
this convention. It should be noted that the residual mois-
ture content is the moisture content at which water ceases to
flow through the soil, except by vapor diffusion, and is
lower than the wilting point.
[12] The fluxes from the land surface to the atmosphere are

determined to conserve both mass and energy based on a
Penman‐Monteith type combination equation. The Noah
model limits the latent heat flux with a canopy resistance
term which it calculates as a function of the minimum canopy
resistance divided by the leaf area index (LAI) and four
functions that vary from zero to 1. The first three of these
functions are related to the solar radiation, vapor pressure
deficit, and air temperature. The last function is related to the

average soil moisture in the root zone weighted by layer
thickness (equation (3)).

F ¼
Xnroot
i¼1

dzi
rootz

� �ref � �i
�ref � �w

� �
; ð3Þ

where F is the factor canopy resistance is divided by to vary
resistance as a function of soil moisture, dzi is the thickness
of layer i, rootz is the total thickness of the root zone, nroot is
the number of layers in the root zone, �w is the wilting point,
below which plants are unable to transpire, �ref is the field
capacity or reference water content above which soil water
does not limit transpiration, and �i is the water content in
layer i. �ref and �w are typically defined in the Noah land‐
surface model based on the soil hydraulic properties as in
Wetzel and Chang [1987]. F is limited to fall between zero
and one, inclusive. When the average soil moisture de-
creases, the total canopy resistance term increases, leading to
a decrease in latent heat flux. For further information consult
Chen and Dudhia, [2001] and Jacquemin and Noilhan
[1990].
[13] The Noah model is designed to be coupled with the

Weather Research and Forecasting model (WRF) or to be
run in an offline mode in which it can use atmospheric
boundary conditions measured near the ground surface. We
used the offline mode here. In offline mode it requires air
temperature, pressure, humidity, wind speed, shortwave and
longwave downwelling radiation, and precipitation forcing
data. The Noah model typically runs on a 30 min time step,
but we shortened this to 3 min to improve stability for some
of the more extreme SHP parameter sets.
[14] We initialized the model based on observed soil data

when available, with a vertically homogenous moisture and
temperature profile. We performed a simple sensitivity test
by varying the initial moisture content and found it had very
little impact on the inverse model results. In all cases, the
model was spun up for 1 year prior to the start of the inverse
procedure and verification procedure. While the deep soil
moisture does not completely stabilize after the full 2 year
model run, the changes are small after the first year, and the
root zone soil moisture shows no significant changes as a
function of initial moisture content after the initial spin up
year.

2.2. ARM Sites

[15] We used 14 sites from the Atmospheric Radiation
Measurement (ARM) program. The ARM sites are spread out
across northern Oklahoma and southern Kansas (Figure 1).
At these sites, the model forcing data are observed along with
turbulent fluxes (latent and sensible heat). The turbulent
fluxes are measured by the Bowen ratio method at 8 sites, and
by the eddy covariance method at 7 sites. Table 1 summarizes
the model parameters used for each site.
[16] The 14 ARM sites cover a range of annual precipi-

tation levels and vegetation characteristics. These sites are
all of the ARM extended facility sites in the Southern Great
Plains region that have forcing and turbulent flux data for
the period 2004–2005. Mean annual precipitation ranges
from 580 mm/yr at site E1 to 970 mm/yr at site E7. Mean
vegetation cover ranges from 10% grass cover at site E1 to
95% forest cover at site E21 and we varied the vegetation

Figure 1. Map of ARM extended facilities used in this
study.
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cover over the course of the model run based on the MODIS
NDVI product as described below. The texture of the topsoil
layer varied from site to site as follows: silt loam
(E1,5,7,13,21,24), silty clay loam (E3,6), loamy sand
(E4,8), loam (E9,20,27), and sand (E15). Other texture
classes reported at each site were commonly the same or
very similar to the top layer, with clay and clay loam present
deeper in the soil column at several sites. No observations of
land‐surface roughness were available at these sites, so we
used the Noah model’s default value for the given land
cover type. Albedo was derived from observations of
downward and upward shortwave observations at each site
and, at all sites, it is within 0.02 of the Noah default albedo
for each land cover type.
[17] For these sites, we initialized the model soil moisture

as dry (� = 0.10) or wet (� = 0.35) depending on observed
values from heat dissipation probes from January of 2004.
Althoughwe can reasonably determine whether the soil is wet
or dry from these data, more precise determination of initial
soil moisture would be highly dependent on the calibration at
the measurement location, which is imprecise. Sensitivity
testing suggests that errors in the initial value would not
substantially affect the results.
[18] At all sites, time varying vegetation cover was

derived from MODIS observations. We compute the frac-
tion of green vegetation cover (Fg) from the MODIS 16‐day
NDVI product using equation (4) as in Gutman and Ignatov
[1998].

Fg ¼ NDVI� NDVIo
NDVI1 � NDVIo

: ð4Þ

[19] We use this formulation because it is the most widely
used form in the land‐surface modeling community and
because historical NDVI data are available for retrospective
studies while more modern vegetation measures such as the
Enhanced Vegetation Index or EVI [Huete et al., 1994] are
not. We do not expect the fundamental conclusions of this
study to be affected by the use of different vegetation
indices. We used a value of 0.2 for NDVIo consistent with
observed soil NDVI [Montandon and Small, 2008]. We
used a value of 0.85 for NDVI∞ consistent with observed
maximum NDVI in this region. We interpolated the 16‐day
product to the model time step using a cubic spline on

temporally smoothed NDVI data. This time varying NDVI
product inherently includes effects such as local crop har-
vest, and the natural spring green up at each site. While we
do not include variations in surface roughness that may
occur as part of this change in vegetation cover, the Noah
model is not commonly run with time variant surface
roughness. In the future this could be an area for model
improvement.

2.3. Turbulent Fluxes and Closure

[20] Turbulent flux measurements can be imprecise, but
closure of the energy balance can be used to constrain the
flux measurements. Flux measurements made by the Bowen
Ratio method inherently have a closure of 1. Although this
does not mean they are perfect, it means that no simple
correction is possible. The observed closure (equation (5))
of the surface energy balance from measured fluxes at the
eddy covariance sites generally ranged from 0.8 to 1.2.

closure ¼ LHþ SH

Rn � G
; ð5Þ

where LH is latent heat flux, SH is sensible heat flux, Rn is
net radiation, and G is ground heat flux. There is no storage
term in this equation because the surface layer in Noah is
infinitely thin. Ground head flux was not measured at these
sites, so we used G from the default model simulations at
each site. Because G is commonly less than 20% of the
midday available energy and errors in modeled G are likely
to be small [Hogue et al., 2005], the use of model G is not
expected to add much error to the final result. At the ARM
sites, we found the average midday G to be 11% of Rn with
at standard deviation of 7%.
[21] Twine et al. [2000] performed a rigourous study of

eddy covariance measurements and energy balance and
found that the eddy covariance was the largest source of
error, typically underestimating fluxes by 10% to 30%. Kurc
and Small [2004] found that the eddy covariance method
sometimes underestimated fluxes by 10% relative to a co-
located Bowen ratio station. They attributed this to closure
problems. Kabat et al. [1997] found that average daily
measurements with the two methods agreed well, but there
was a lot of scatter in hourly comparisons. Part of these
errors may stem from variations in the location the observed
turbulent fluxes come from. The location varies as a func-

Table 1. Site Parametersa

Site Veg. Type Veg. Fg Root Depth Txt. Cls. MAP (mm) Albedo Zo (m) Lat. Lon.

ARM E1 Wheat 10 55 cm Si.L. 580 0.19 0.07 38.202 −99.316
ARM E3 Wheat 80 55 cm Si.Cl.L. 910 0.20 0.07 38.201 −95.597
ARM E4 Grass 50 55 cm L.Sa. 710 0.17 0.05 37.953 −98.329
ARM E5 Wheat 40 55 cm Si.L. 760 0.19 0.07 38.114 −97.513
ARM E6 Alfalfa 70 55 cm Si.Cl.L. 860 0.19 0.07 37.842 −97.020
ARM E7 Grass 75 55 cm Si.L. 970 0.20 0.05 37.383 −96.180
ARM E8 Grass 30 55 cm L.Sa. 620 0.18 0.05 37.333 −99.309
ARM E9 Grass 55 55 cm L. 810 0.20 0.05 37.133 −97.266
ARM E13 Grass 35 55 cm Si.L. 810 0.18 0.05 36.605 −97.485
ARM E15 Grass 50 55 cm Sa. 710 0.19 0.05 36.431 −98.284
ARM E20 Grass 65 55 cm L. 900 0.18 0.05 35.564 −96.988
ARM E21 Forest 95 125 cm Si.L. 910 0.14 0.80 35.615 −96.065
ARM E24 Wheat 50 55 cm Si.L. 790 0.17 0.07 34.883 −98.205
ARM E27 Grass 65 55 cm L. 950 0.17 0.05 35.269 −96.740

aAbbreviations: Fg, fraction green vegetation cover; Txt. Cls., texture class; Sa., sand; L., loam, Si., silt; Cl., clay; MAP, mean annual precipitation; Zo,
surface roughness.
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tion of boundary layer stability, wind speed, and wind
direction. This variation can mean that fluxes derived from
the eddy covariance method do not always match the local
energy balance and thus have closure which deviates from 1.
The Bowen ratio technique can also have problems related
to fetch, but this technique forces closure on the fluxes so
that no correction is possible.
[22] A closure value of 1 means that the observed tur-

bulent heat fluxes balance the observed available energy.
Deviations from a closure of 1 imply errors in the ob-
servations. Closure less than (greater than) 1 means that the
observed turbulent fluxes are less than (greater than) the
observed available energy. Periods in which closure was
below 0.8 or above 1.2 were excluded from the analysis.
Closure was never above 1.2 for a significant period. Errors
in closure are likely to come from the measurement of LH
and SH [Twine et al., 2000]. To correct errors in closure, we
adjusted the measured LH and SH at all sites to force closure
while keeping the Bowen ratio constant as recommended by
Twine et al. [2000] (equations (6) and (7)).

LH* ¼ LHþ LH
Rn � G

LHþ SH
� 1

� �
; ð6Þ

H* ¼ H þ H
Rn � G

LHþ SH
� 1

� �
; ð7Þ

where LH* and SH* are the corrected latent and sensible
heat fluxes, respectively, and Rn, G, LH, and SH denote the
midday mean value of each flux for the day of the current
measurement. These fluxes were measured every 30 min,
but closure was forced on a daily basis, not for the indi-
vidual measurements. While this will not remove all of the
error in the flux measurements, it makes them consistent
with the radiation measurements that are supplied to the
model as inputs. We did not want to force closure for each
30 min time step because we wanted to avoid influencing
the data too much with modeled G.

2.4. Soils Database

[23] We used the SHP database of Schaap and Leij [1998]
as the basis for the inverse procedure. This database is a
collection of three other databases (RAWLS, AHUJA, and
UNSODA), and as such it is one of the largest SHP data-
bases available. The public domain UNSODA database [Leij
et al., 1996] forms the bulk of the Schaap and Leij [1998]
database. The database of Schaap and Leij [1998] con-
tains 1306 soils with complete SHP measurements. Only
three soil texture classes are represented by fewer than 50
soils. We used this database because of its international
nature, its availability to other researchers, and because it
has been used extensively [Leij et al., 1997; Arya et al.,
1999; Hoffmann‐Riem et al., 1999; Poulsen et al., 2000;
Schaap et al., 2001]. The SHPs in this database were not
measured within the LSM framework or at the LSM scale,
but it is the best database available. It is based on lab and
field measurements of relatively small soil samples that
would cover an area of approximately 100 cm2. These may
show more variation in SHPs than would be seen in SHPs
derived at the larger scales used in LSMs. However, these
measurements also do not include large scale soil variation

such as macropores that would be likely to increase the
observed variation.

2.5. High Resolution Land Data Assimilation System
Data

[24] A key aspect of this study is the use of forcing data
from a regional data set in addition to local observations.
This is important because it will be necessary to use a
regional data set if we wish to map LHPs over a regional or
global area. We use the 4 km gridded HRLDAS forcing data
set [Chen et al., 2007] because it has the highest spatial
resolution of the available regional and global data sets.
HRLDAS precipitation data come from the 4 km NCEP
stage‐IV rainfall product. These data are derived by merging
gauged precipitation records with RADAR data. Chen et al.
[2007] found that this precipitation product had a cumula-
tive error of 10–20 mm over the 40 day record of the
International H2O Project (IHOP). The precipitation had a
slightly negative bias (HRLDAS less than observed) at the
drier, western IHOP sites, and the precipitation had a
slightly positive bias at the wetter western IHOP sites.
HRLDAS downward solar radiation product comes from the
GOES hourly product. They also found that the solar radi-
ation product had a midday root mean square error (RMSE)
of 80 W/m2, and overestimated solar radiation during the
early morning and late afternoon. Chen et al. [2007] found
that midday solar radiation generally had a slightly positive
bias less than 20 W/m2. HRLDAS downward longwave
forcing data come from the NCEP Eta Data Assimilation
(EDAS) product. Errors in longwave forcing were deter-
mined to be negligible relative to errors in solar radiation.
Finally, HRLDAS surface wind, temperature, pressure, and
humidity were derived from EDAS 40 km data. Chen et al.
[2007] compared these data to 113 observation points
from the Oklahoma Mesonet. They found RMSE values of
<6 hPa for pressure, <2.2 K for temperature, <1.1 g/kg for
mixing ratio, and roughly 1.4 m/s for wind speed. All of
these variables had a small high (low) bias during the day
(night).

2.6. MODIS Data

[25] We use the MOD11A1 (Terra) and MYD11A1
(Aqua) MODIS land‐surface temperature (LST) version 4
1 km daily products from the Terra and Aqua satellites.
These data are available at no cost from the NASA Ware-
house Inventory Search Tool (WIST, https://wist.echo.nasa.
gov/). Terra overpasses occur at 10:30 local time, while
Aqua overpasses occur at 13:30 local time. These two passes
provide a morning and afternoon observation. These two
observations provide both a rate of heating through the day
and a near maximum daily temperature. The exact local
measurement time for each grid cell varies depending on
ground position relative to the orbit ground track; grid points
west of the satellite ground track are observed earlier relative
to local sun time while grid points east of the satellite
ground track are observed later. We used the local mea-
surement time of each grid cell when determining which
model time step to compare the MODIS data to. The
nominal grid spacing of this data product is approximately
1 km (927 m), although the width of an individual obser-
vation will range up to 6 km at a view angle of 60° off nadir.
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[26] These land‐surface temperature observations have
been verified to be accurate to better than 1 K [Wan et al.,
2004]. These data products use MODIS bands 31 (10.6–
11.3 mm) and 32 (11.8–12.3 mm) with the generalized split
window algorithm [Wan and Dozier, 1996]. In its simplest
form, the split window algorithm assumes a known land‐
surface spectral emissivity and uses upwelling radiation
measured in two spectral bands to solve for two unknowns
(atmospheric emission and land‐surface temperature). The
MODIS LST product incorporates improvements to the split
window algorithm based on the view angle, total column
water content, and lower atmosphere temperatures [Wan et
al., 2004].
[27] We tested various subsets of the MODIS data based

on the supplied quality assurance data but found that the
inverse model was relatively unaffected and may have
behaved worse when some data were removed. As a result,
we used all data for which a LST was produced as part of
the MOD11A1 and MYD11A1 products. We suspect that
errors in the MODIS product are smaller than the errors
related to comparing an imperfect model to a large, heter-
ogenous, and changing land surface, for example, an indi-
vidual MODIS LST observation may be 1 km across one
day and 6 km across another day.
[28] Because the variation in the viewing angle of the

satellite is large, we analyzed errors between MODIS LST
and modeled LST as a function of view angle. There was a
very slight relationship between sensor view angle and LST‐
model error, but we did not find any substantial improve-
ment to the inverse procedure by limiting the view angles
we used. We performed this same analysis to compare LST
errors to the angle between the sensor view angle and the
solar illumination angle. Similarly, we found no improve-
ment to the inverse procedure by subsetting the angles used
and only a slight correlation between errors and the sun‐
view angle.

2.7. Inverse Procedure

[29] The inverse procedure used in this study follows that
of Gutmann and Small [2007] and is broken into two parts.
First, we calibrated the Noah Co parameter to MODIS
observations of surface temperature during dry days. Dry
days were defined as days in which the model latent heat
flux is less than 100 W/m2. The Co parameter comes from
Zilitinkevich [1995] and regulates turbulent heat fluxes. Co
is used in equation (8) to calculate the roughness length for
turbulent fluxes SH and LH.

zo�h ¼ zo exp ��Co
ffiffiffiffiffiffiffiffiffi
u*zo
�

s0
@

1
A; ð8Þ

where zo is the standard roughness length for momentum,
� = 0.4 is the von Karman constant, n is the kinematic
molecular viscosity of air (≈1.6 × 10−5 m2/s), u* is the
friction velocity, and Co is a calibration parameter set to
0.1 in Noah by default. The Co parameter was determined
to be very important to the calculation of surface temper-
ature by Chen et al. [1997] and land‐surface atmosphere
exchange by LeMone et al. [2008] and LeMone et al.
[2009]. We calibrated Co with dry days because the
model will be insensitive to LHPs during these periods.

[30] Second we calibrated the model LHPs to MODIS
observations of surface temperature on days for which the
model midday latent heat flux is greater than 100 W/m2. To
avoid problems related to transient cloud cover, we only
used days in which the midday average solar radiation was
greater than 600 W/m2. Based on the inverse procedure in
[Gutmann and Small, 2007], LHP calibration was performed
by running the model once for each of the 1306 soils in the
database of Schaap and Leij [1998]. We then selected the
LHPs from the model run with the smallest error between
modeled surface temperature and MODIS observations of
surface temperature. Error was calculated as the root mean
square (RMS) error between the set of MODIS observations
and the corresponding model temperature. As in Gutmann
and Small [2007], we also selected the optimal LHPs
based on the observed energy fluxes (LHPopt), here error
was calculated based on the midday average heat flux and
the RMS value was calculated over all days. Finally we
select the LHPs based on the soil texture class average SHPs
at that site (LHPtxt). The LHPopt and LHPtxt models are used
for reference as the best possible model and the current
default model, respectively. We used the inverse model to
perform three experiments as described below.
2.7.1. Experiment 1: ARM Forcing Data
[31] The first model experiment was designed to test the

quality of LHPs derived from MODIS surface temperature
when the forcing data are measured locally, thus minimizing
errors. We ran the model for two years (2004–2005) at the
14 ARM sites with locally observed precipitation, air tem-
perature, humidity, wind speed, pressure, and downward
shortwave and longwave radiation. The first year of the
model run was used to spin‐up the model, and the second
year was used in the inverse modeling procedure. The
inverse modeling procedure was run once at each site using
MODIS surface temperature for the objective function and
ARM forcing data to drive the model (LHPaf). We evaluated
these results by comparing the model output latent and
sensible heat fluxes to the observed fluxes for 2005.
2.7.2. Experiment 2: HRLDAS Forcing Data
[32] The second model experiment was designed to test

the quality of the LHPs derived from MODIS surface tem-
perature when no observations of local weather forcing are
available, because this is how the inverse procedure would
need to be run to map LHPs on a regional or global scale. In
addition, this experiment tested LHPs calibrated for a time
period (2002) other than the time period used for verifica-
tion (2005). By using a different time period for calibration,
we tested whether the derived LHPs are a function of the
location or the calibration period. It also tests whether they
are compensating for errors in the forcing data. In this
experiment, we used the HRLDAS forcing data for precip-
itation, air temperature, humidity, wind speed, pressure, and
downward shortwave and longwave radiation. We ran the
model for 18 months (January 2001–June 2002). Again, we
used the first year to spin‐up the model. Then we used the
6 months in 2002 for the inverse modeling procedure. The
inverse procedure was run once at each site using MODIS
surface temperature for calibration and HRLDAS forcing
data to drive the model (LHPhf). As in the first experiment,
we evaluated these results by running the model with
observed forcing data for 2004–2005 and comparing the
modeled latent and sensible heat fluxes to the observed
fluxes in 2005. We only used five sites in this experiment
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because we only had HRLDAS forcing data for the ARM
sites E7, 8, 9, 13, and 15.
2.7.3. Experiment 3: Model Sensitivity
[33] The third model experiment was designed to test the

sensitivity of the inverse procedure to errors in other model
parameters, such as surface roughness, albedo, and minimum
canopy resistance. We selected these parameters because we
believed them to be the most important remaining parameters
in the land‐surface model because they cover the three other
most important processes, radiation energy balance, atmo-
spheric exchange, and vegetation effects. Bastidas et al.
[1999] studied the sensitivity of a land‐surface model to
various model parameters and found that minimum canopy
resistance was the most important vegetation parameter, and
surface roughness was shown to be equally important.
[34] To perform this test, we used the same set up as in

experiment 1 at ARM site E9, but we varied albedo from 0.1
to 0.26 (observed = 0.2). For reference, the default albedo
for an evergreen broadleaf forest is 0.1, and for a playa it is
0.3. We varied albedo in small increments near the observed
value because small errors are more likely, we then included
a wider range of values to cover a reasonable range of land‐
surface values. It should be noted that because albedo can be
reasonably determined from satellite observations, such
large errors in a real model are highly unlikely.
[35] We perform this same experiment with surface

roughness length ranging from 0.005 m to 0.5 m (default =
0.05 m). The default roughness for water or snow is 0.001 m
and for forests it is around 0.8 m. Because of the large range
of possible values, we varied roughness on a log scale for
the more extreme values and linearly near the default value
to provide more detail for more likely values.
[36] Finally, we perform this experiment at site E15 with

minimum canopy resistance ranging from 20 s/m to 75 s/m

(default = 40 s/m). The default minimum canopy resistance
for a grass is 40 s/m, and for a savanna or cropland/woodland
mosaic it is 70 s/m. We varied minimum canopy resistance
linearly over this range.
[37] These ranges were selected to cover almost the entire

range of expected natural values. We believe it is reasonable
to assume that some amount of information is available
about a site ahead of time (e.g., is it a forest or a lake) thus
we did not believe it was not necessary to test the entire
range. All of the parameters used in this experiment are
summarized in Table 2.
[38] We selected ARM site E9 and 15 because the model

performed well in the previous experiments at these sites
and because they have intermediate values for vegetation
cover and mean annual precipitation. As in experiment 1, we
evaluate these results by comparing the model output latent
and sensible heat fluxes to the observed fluxes for 2005.
Additionally, we look at the variation of LHPs as a function
of errors in each model parameter. We compare these var-
iations to the distribution of SHPs in the database of Schaap
and Leij [1998], and to the LHPopt and LHPtxt values.

3. Results and Discussion

[39] We quantify how well our inverse procedure
improved the representation of the land‐surface hydrology
by calculating the RMSE and bias between the midday
measured and modeled latent and sensible heat fluxes. We
also present the coefficient of determination between mea-
sured and modeled latent heat flux. We focus on the latent
heat flux because this flux is more sensitive to SHPs than is
the sensible heat flux [Bastidas et al., 1999]. We compare
the Noah land‐surface model output using the experimental
LHPs, LHPopt, and LHPtxt. The optimal model error represents
the combined error due to errors in model physics, model
structure, other model parameters, observed forcing, and
observed fluxes. The optimal model error therefore represents
the minimum error the model is capable of when only LHPs
are calibrated. The texture model error is presented to show
how well the Noah model performs when using the default
hydraulic properties.
[40] As examples, ARM sites E9 and E15 are presented in

Figures 2 and 3, respectively. Regardless of LHPs used, the
simulated time series follow the trends of increasing
(decreasing) ET (sensible heat flux) associated with rain
events. At ARM site E9 (Figure 2), the texture modeled ET
decreases more rapidly from day 170 to day 220 and from
day 240 to day 270 compared to the observed ET and
compared to the optimal and experimental models. This may
be due to the substantially higher surface runoff predicted by
the texture model.
[41] At ARM site E15 (Figure 3), the texture modeled ET

is consistently lower than the observed ET and ET from all
of the calibrated LHP model runs. This is due to a much
higher saturated conductivity that causes all of the water to
drain past the bottom of the root zone, resulting in high
subsurface runoff. Additionally, Figure 3 illustrates the
potential problems resulting from errors in forcing data. In
this extreme case, several rainstorms appear to be missing
from the forcing data around day 180–200. As a result, the
observed ET is much higher than the modeled ET. We
removed the period from day 180 to day 225 from both the

Table 2. Parameters Used in Experiment 3 Sensitivity Tests

Site Albedo Zo (m)

Stomatal
Resistance

(s/m)

ARM E9 0.10 0.05 40
ARM E9 0.14 0.05 40
ARM E9 0.17 0.05 40
ARM E9 0.19 0.05 40
ARM E9 0.20 0.05 40
ARM E9 0.21 0.05 40
ARM E9 0.23 0.05 40
ARM E9 0.26 0.05 40
ARM E9 0.20 .005 40
ARM E9 0.20 .01 40
ARM E9 0.20 .03 40
ARM E9 0.20 .04 40
ARM E9 0.20 .06 40
ARM E9 0.20 .07 40
ARM E9 0.20 .1 40
ARM E9 0.20 .5 40
ARM E15 0.18 0.05 30
ARM E15 0.18 0.05 35
ARM E15 0.18 0.05 40
ARM E15 0.18 0.05 45
ARM E15 0.18 0.05 50
ARM E15 0.18 0.05 55
ARM E15 0.18 0.05 60
ARM E15 0.18 0.05 65
ARM E15 0.18 0.05 70
ARM E15 0.18 0.05 75
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verification and calibration procedures. This was the largest
error in the forcing data that we observed. The other periods
we removed from analysis were days 225–260 as site E20,
and days 196–206 at site E21.

3.1. Experiment 1: ARM Forcing Data

[42] Results for experiment one are presented in Table 3
and Figures 4 and 5. We summarize the data for the 10
sites that had an LH error less than 70 W/m2 in the optimal
model. These sites are E3, 4, 6, 7, 8, 9, 15, 20, 24, and 27.
We removed the remaining sites (E1, 5, 13, and 21) because
if the optimal model is unable to reasonably fit the observed
surface fluxes, it is likely that the observed forcing and
fluxes are inconsistent at these sites, or that errors in other

model parameters or errors in model structure dominate; as
such the results below are the best case results. We also
present the summary for all sites at the bottom of Table 3,
while these results are less pronounced, they are very similar
to those presented below.
[43] The optimal model performs the best, but the

MODIS‐derived model reduces error by 65% relative to the
texture and optimal models and the MODIS‐derived model
reduces 90% of the cumulative bias. The average LH error
for the MODIS‐derived model was 67 W/m2 and the bias
was −6.4 W/m2. The average LH error for the optimal model
was 50.4 W/m2 and the bias was −0.9 W/m2. The average
LH error for the texture model was 97.8 W/m2 and the bias
was −50.2 W/m2. Despite the low cumulative bias, the bias

Figure 2. Site details for ARM site E9. (a) Soil column water content and daily precipitation, (b) midday
sensible heat flux, (c) midday ET, and (d) combined surface and subsurface runoff, for the (blue online,
thick black in print) LHPopt, (red online, thick gray in print) LHPaf, (light red online, thin gray in print)
LHPhf, (green online, thin black in print) LHPtxt, and observations (+).
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at individual sites ranged from −66 to 46 W/m2 for the
MODIS‐derived model and from −141 to 35 W/m2 for the
texture model.
[44] A similar pattern is present in the sensible heat flux

results. The average SH error for the MODIS‐derived model
was 61 W/m2 and the bias was 8 W/m2. The average SH
error for the optimal model was 49 W/m2 and the bias was
6.5 W/m2. The average SH error for the texture model was
78 W/m2 and the bias was 39 W/m2.
[45] These results demonstrate a substantial improvement

to the Noah land‐surface model when we use remotely
sensed surface temperature to determine LHPs compared to
using the default texture class average LHPs. This experi-
ment used local observations of surface meteorological data
and performed the calibration for the same time period that
was used for the verification (2005).

[46] In addition, we found that the MODIS‐derived model
performed better than models calibrated using locally
observed surface temperatures. When using locally observed
surface temperature we calculated an average LH error of
76 W/m2 at a similar set of ARM sites in addition to nine
sites from the International H2O Project (IHOP). The
IHOP sites are the in the same region as the ARM sites.
This LH error is higher than the MODIS‐derived model
LH error of 67 W/m2. These results suggest that the local
observations of surface temperature are not as useful for
determining larger scale LHPs. This is probably because
the local observations of surface temperature (≈4 m2) may
not be representative of the area over which the latent and
sensible heat fluxes are observed (≈0.1 km2). The larger
scale MODIS surface temperatures (1 km2) used in this
study appear better representative of the larger scale
hydraulic processes.

Figure 3. Site details for ARM site E15, as in Figure 2. The ARM forcing data around day 180 appear to
be missing a substantial rainstorm. As a result, the observed and modeled ET and SH are inconsistent
from day 180 to day 225 (shaded), so this period has been removed from analysis.
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[47] While sites E1, 5, 13, and 21 may have worked
poorly because of measurement errors, it is worth examining
the relationship between these sites and their associated land
cover type. There was only one site in this study that was a
forest (E21), and our methodology did not appear to work at
that site. There are two primary reasons that we suspect for
this. The first is that the dense vegetation cover limits the
effect of SHPs on latent heat fluxes as found by Gutmann
and Small [2007], and thus calibrating SHPs has little
effect on the model. The second is that the observed LH at

this site may be influenced by Okmulgee Lake, which is
approximately 500 m away. The lake may be inside of the
flux tower footprint at times because the flux tower at site
E21 is higher than at other sites. Evaporation from the lake
surface and groundwater accessed by tree roots could both
substantially change the local fluxes, and Noah does not
include a groundwater component. Conversely, the lake may
be included in the 1 km MODIS pixel, thus changing the
surface temperature that we are using to derive LHPs. Both
of these effects would fit with the observed model biases for
this site. The texture class model is biased too low, con-
sistent with enhanced latent heat flux at this site as a result
of local groundwater. The MODIS‐derived LHP model is
biased too high, consistent with a model fit to surface
temperatures that are too cool.
[48] The remaining three bad sites are harder to explain.

There was also only one site that was largely barren of
vegetation cover (E1), and our methodology did not appear
to work at this site either. The LH error at this site actually
improved with the LHPaf when compared to both the LHPtxt
and the LHPopt, but even the LHPopt had a substantial LH
error. This implies that errors in other parameters in the
model or in the observed LH or forcing data may be more
important at this site. One possibility is that the Noah bare
soil evaporation parameter (FXEXP) may need to be cali-
brated as found by Peters‐Lidard et al. [2008]. It is possible
that this is also the reason why sites E5 and E13 did not
perform well. These sites had mean vegetation covers of
40% and 35% respectively, lower than any of the sites that
appeared to work well except for site E8 (30%), and it is
possible that the default value for FXEXP happens to work
well at site E8.

Table 3. Latent Heat Flux Summary Statistics for Each Model
Experimenta

Site

LHPopt LHPaf LHPhf LHPtxt

RMSE Bias RMSE Bias RMSE Bias RMSE Bias

ARM 1* 89 −44 74 5 86 3
ARM 3 56 4 77 40 68 30
ARM 4 36 6 69 46 53 −36
ARM 5* 85 −22 101 −15 100 35
ARM 6 61 19 56 −15 65 12
ARM 7 45 −3 47 −19 53 5 85 −60
ARM 8 41 −6 76 −63 42 −2 99 −84
ARM 9 62 3 71 21 71 −6 106 −64
ARM 13* 71 −9 117 −95 101 −70 105 −79
ARM 15 35 −10 36 −8 53 19 160 −141
ARM 20 47 −5 88 −66 117 −93
ARM 21* 85 1 108 44 102 −17
ARM 24 55 −4 82 25 61 16
ARM 27 47 −12 47 −12 114 −78
Subset 50.4 −0.9 66.9 −6.4 56.8 3.5 97.8 −50.2
All Data 58.2 −5.8 74.9 −8.0 94.4 −39.7

aRMSE and bias summaries for all data are given at the bottom of each
column. Sites with an asterisk are not included in the subset summaries as
explained in the text.

Figure 4. Modeled vs. measured midday latent heat flux for the (a) LHPopt, (b) LHPtxt, (c) LHPaf, and
(d) LHPhf. Ordinary least squares r2, root mean square error, and bias are on top of each graph.
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3.2. Experiment 2: HRLDAS Forcing Data

[49] Results for experiment two are presented in Table 3
and Figures 4 and 5. We use the same methodology to
subset the sites as we did in experiment 1. The sites are E7,
8, 9, and 15. The average midday LH error for the HRLDAS
forced model is 56 W/m2 and the bias is 3.5 W/m2. The
average midday SH error for the HRLDAS forced model is
54 W/m2 and the bias is −2.0 W/m2. This is actually slightly
better than the performance of the ARM forced model.
When we look at the same four sites with the optimal, ARM
forced, and texture models we see LH errors of 48, 61, and
115 W/m2, and biases of −3.8, 3.5, and −86 W/m2 respec-
tively. For these four sites, the HRLDAS forced model
performs better than the ARM forced model. Similarly, the
errors in sensible heat flux for the HRLDAS forced model
were better with an error of 54 W/m2 and a bias of 2 W/m2.
[50] These results show that we do not need local ob-

servations of meteorological data to use as input to the Noah
land‐surface model. Using the HRLDAS forcing data
instead of the locally observed forcing data appears to
improve the predicted LHPs. It is unclear if these results will
be consistent when we examine a larger number of sites. A
regional forcing data set may be better to use because local
meteorological observations will have missing data periods.
Precipitation has been shown to be a very important forcing
parameter for inverse modeling in particular [Peters‐Lidard
et al., 2008], and a missing precipitation observation will
substantially deteriorate model performance. The HRLDAS
forcing data set may be less likely to completely miss a
precipitation event. In addition, local observations are rep-
resentative of micrometeorological conditions that may not
be the same as those over the larger area covered by a sat-
ellite or flux tower footprint.

[51] This experiment also showed that the LHPs derived
from surface temperature are not specific to the calibration
period used. The HRLDAS forcing data and MODIS surface
temperatures used for calibration in this experiment were for
the time period January 2002 to June 2002 and were verified
during 2005. Because the HRLDAS forced model LH is
similar to the observed fluxes for this period, we gain
confidence that the LHPs derived are specific to the area
being studied rather than to the calibration period.

3.3. Experiment 3: Model Sensitivity

[52] Results for experiment three are presented in
Figures 6 and 7. For this experiment, LHPs were derived
using observed ARM forcing data and MODIS surface
temperature observations (LHPaf). We present optimal,
MODIS derived, and texture based model results with var-
iations in the model albedo, roughness length, and minimum
canopy resistance. At ARM site E9, with variations in albedo
from 0.1 to 0.26 (observed = 0.2) LH error varied from 62 to
68 W/m2 for the optimal model, 65 to 73 W/m2 for the
MODIS‐derived model, and 98 to 102 W/m2 for texture
based model (Figure 6, top). With variations in roughness
length from 0.005 to 0.5 m (default = 0.05) LH error varied
from 64 to 65 W/m2 for the optimal model, 67 to 69 W/m2

for the MODIS‐derived model, and 97 to 98 W/m2 for tex-
ture based model (Figure 6, middle). At ARM site E15, with
variations in minimum canopy resistance from 30 to 70 s/m
(default = 40 s/m), LH error varied from 46 to 50 W/m2 for
the optimal model, 44 to 46 W/m2 for the MODIS‐derived
model, and 146 to 172 W/m2 for texture based (Figure 6,
bottom).
[53] We do not focus on SH in this study because SH is

less sensitive to SHPs [Bastidas et al., 1999]; however, we

Figure 5. (left) Latent and (right) sensible (top) heat flux root mean square errors and (bottom) bias
averaged across all sites for the optimal LHP model (LHPopt), the two MODIS‐derived LHP models
(LHPaf, LHPhf) and the texture class‐derived LHP model (LHPtxt).
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note a few important points here. The SH errors are also
generally insensitive to errors in other model parameters,
with the exception of albedo (Figure 6). Albedo plays a
large role in the surface energy balance, and as such large
changes to it must change other terms in the surface energy
balance. Here, SH errors vary more as a function of albedo
than they do as a function of LHP parameter set. For
roughness length and minimum canopy resistance, SH errors
show less change between parameter sets than LH errors do.
[54] In addition, it is worth pointing out that SH errors are

actually lower for the LHPtxt model than for the other
models at these two sites (as previously shown, this is not
the case across all sites.) This is not because the LHPopt and
LHPaf models perform particularly poorly at these sites,
although they are worse than the average, but because the
LHPtxt happens to perform well in predicting SH at these
sites. LHPtxt SH errors at these sites are just over 50 W/m2,
while the average SH error across all sites for the LHPtxt
model is 78 W/m2.
[55] For all of the sensitivity tests, the LH error varied

more between different LHP methods than it did as a
function of errors in other model parameters. This could
suggest that the inversely derived LHPs (both LHPopt and
LHPaf) are compensating for these errors. However, an

analysis of the derived LHPs suggests that these LHPs are
not varying significantly (Figure 7). In all cases, the derived
LHPaf parameters varied little as a function of errors in other
parameters. The derived LHPopt only varied by about 10%
of the range used in the inverse procedure as a result of
variations in albedo. The LHPopt Ks parameter was the
most sensitive parameter in these tests, and it varied from
70–500 cm/d when very large errors in albedo were intro-
duced. This is substantially smaller than the total variation in
the SHP database of Schaap and Leij [1998], in which
measured Ks values vary from 0.05 to 20000 cm/d. Varying
the roughness length from 0.05 to 0.5 m (Figure 7) had very
little effect on Ks and m in both the LHPopt and the LHPaf.
LHPopt Ks varied from 70 to 120 cm/d and m varied from
0.16 to 0.19.
[56] For the minimum canopy resistance test, there is a

step change in LHPopt parameters between minimum canopy
resistance values of 50 and 55 s/m. In this case, m decreased
from 0.34 to 0.19 and Ks increased from 60 to 1100 cm/d.
These parameters have opposite impacts on the net effect of
SHPs. The decrease in m causes the unsaturated conductivity
to decrease more rapidly as moisture content decreases. This
decrease may compensate for the higher saturated conduc-
tivity. Indeed, Gutmann and Small [2007] showed that at a

Figure 6. Root mean square error in (left) latent and (right) sensible heat flux for (diamonds) LHPopt, (+)
LHPaf, and (D) LHPtxt for site E9 as a function of varying (top) albedo, (middle) roughness length (zo),
and for site E15 as a function of (bottom) minimum canopy resistance, Rs.
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site with 60% vegetation cover, a decrease in m from 0.34 to
0.19 would increase modeled LH by ≈50 W/m2, while an
increase in Ks from 60 to 1100 cm/d would decrease modeled
LH by ≈80 W/m2. This indicates that the individual para-
meters are not necessarily stable in all conditions but that the
effective hydraulic conductivity curves are stable. Extremes
in vegetation type (tundra, some forests) can reach values as
high as 150 s/m in the default Noah parameter set. It is
possible to reach larger minimum canopy resistance values in
more arid shrublands (300 s/m), and future tests should
probably expand this experiment to higher values. Indeed,
recent work has shown that the minimum canopy resistance

of grasses can vary substantially over time even at a single
site [Alfieri et al., 2008].
[57] These results show that the inverse procedure is rela-

tively insensitive to substantial errors in three other important
model parameters. The three parameters we varied control the
energy available to the model (albedo), the turbulent
exchange between the land surface and the atmosphere
(roughness length), and the transpiration rate (minimum
canopy resistance). We showed that even when varying these
parameters by more than the likely error in each, both the
derived LHPs and the resultant LH error were largely
insensitive to these errors. It should be noted that we varied

Figure 7. (right) Ks and (left) van Genuchten m for (diamonds) LHPopt and (+) LHPaf for site E9 as a
function of varying (top) albedo and (middle) zo and for site E15 as a function of (bottom) Rs. For ref-
erence, histograms of these parameters from the database of Schaap and Leij [1998] are displayed as
well. Ks is consistently higher than the mean of the distribution and m is typically lower than the mean of
the distribution.
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each of these parameters independently, and thus we do not
know the effect of interactions between these parameters. In
addition, the simplicity of the inverse procedure does not
allow an estimation of the errors in derived LHPs, or a more
sophisticated analysis of the importance of each parameter.
Furthermore, our results will not be applicable to parameter
errors outside of the range we tested here.

4. Conclusions

[58] We have shown that using MODIS observations of
surface temperature to derive landscape hydraulic properties
decreases error in modeled latent and sensible heat fluxes by
over 60% compared with standard texture based classifica-
tions. More importantly, model runs using LHPs derived
from remotely sensed surface temperature removed 90% of
the bias between modeled and observed latent heat fluxes
when the bias is averaged across multiple sites. This result
holds even when locally measured meteorological data are
not available. We have also shown that these model para-
meters are persistent through time; LHPs calibrated in 2002,
improve model fluxes for 2005.
[59] Furthermore, we have shown that the calibration of

these parameters is not sensitive to substantial perturbations
to other model parameters. Varying albedo from 0.1 to 0.26,
surface roughness from 0.005 to 0.5 m, and minimum
canopy resistance from 30 to 75 s/m had a minimal impact
on both the LHP parameter values and on the errors in
modeled latent and sensible heat fluxes. The exceptions to
this are that changes in albedo affected sensible heat flux
errors in all models, and minimum canopy resistance
affected the errors in the LHPtxt model and the parameter
values in the LHPopt model. This suggests that the LHPs
derived in this study are not compensating for errors in other
model parameters. One concern is that when varying the
minimum canopy resistance, the LHPopt model saturated
conductivity and the van Genuchten “m” parameter both
shifted, but they changed in such a way as to cancel the
effect of the shift in the other. This suggests that while the
effective value of the LHPs may be stable across model runs
and parameters, the individual LHP parameters derived may
not always be stable. The simplicity of the inverse procedure
and sensitivity analysis limits our ability to infer anything
about interactions between parameters or to directly estimate
an error for the derived LHPs.
[60] It is not clear that the LHPs derived through this

procedure are directly related to the SHPs at the individual
sites. No ground observations of SHPs are available, and
texture is not an adequate method of predicting SHPs for
comparison purposes [Gutmann and Small, 2005]. The
LHPs derived here do appear to improve the model repre-
sentation of the local hydrology, as such, they could be used
to learn about larger‐scale hydraulic processes at these sites.
However, future work must address the relationship between
inversely derived LHPs and field observed SHPs first.
[61] This study may have global applications, but first a

better assessment of its strengths and weaknesses will be
required. The present study analyzed sites with a variety of
land cover types. While it is difficult to draw any clear con-
clusions from the limited number of sites, a few relationships
are worth noting. This study does not appear to work well at
heavily vegetated sites (E21) or nearly bare sites (E1). It is
possible that these sites were problematic because of mea-

surement errors, but it is also possible that high vegetation
cover fractions inhibit the SHP inversion as suggested by
Gutmann and Small [2007]. Similarly, site E1 may not work
well because of measurement errors or because at nearly
bare sites, the model parameter FXEXP becomes more
important than SHPs as suggested by Peters‐Lidard et al.
[2008].
[62] Finally, these specific LHPs are only valid at the sites

they were derived for with the model that was used to derive
them. We do not know if these LHPs would work in another
model, future work should address the transferability of
these parameters to other models. We would also like to see
these LHPs used in a coupled WRF‐Noah model to analyze
the impact of the modified LHPs on weather forecasts.
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