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Abstract

The green vegetation fraction (Fg) is an important climate and hydrologic model parameter. A common method to calculate Fg is to create a
simple linear mixing model between two NDVI endmembers: bare soil NDVI (NDVIo) and full vegetation NDVI (NDVI∞). Usually it is assumed
that NDVIo is close to zero (NDVIo∼0.05) and is generally chosen from the lowest observed NDVI values. However, the mean soil NDVI
computed from 2906 samples is much larger (NDVI=0.2) and is highly variable (standard deviation=0.1). We show that the underestimation of
NDVIo yields overestimations of Fg. The largest errors occur in grassland and shrubland areas. Using parameters for NDVIo and NDVI∞ derived
from global scenes yields overestimations of Fg that are larger than 0.2 for the majority of U.S. land cover types when pixel NDVI values are
0.2bNDVIpixelb0.4. When using conterminous U.S. scenes to derive NDVIo and NDVI∞, the overestimation is less (0.10–0.17 for
0.2bNDVIpixelb0.4). As a result, parts of the conterminous U.S. are affected at different times of the year depending on the local seasonal NDVI
cycle. We propose using global databases of NDVIo along with information on historical NDVIpixel values to compute a statistically most-likely
estimate of Fg. Using in situ measurements made at the Sevilleta LTER, we show that this approach yields better estimates of Fg than using global
invariant NDVIo values estimated from whole scenes. At the two studied sites, the Fg estimate was adjusted by 52% at the grassland and 86% at
the shrubland. More significant advances will require information on spatial distribution of soil reflectance.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Vegetation is important in climate studies due to its role in the
hydrologic cycle. Remote measurements of land surface
reflectance can be used to calculate the parameters, such as the
Leaf Area Index (LAI) or the green vegetation fraction (Fg),
needed to represent vegetation in climate and hydrologic models.
These two parameters represent the vertical and the horizontal
density of live vegetation, respectively (Gutman & Ignatov,
1997). This paper focuses on the impact of soil reflectance on Fg
calculations. Fg is needed for many hydroclimatic applications
due to its important contribution in climate models and surface
fluxes (Matsui et al., 2005; Liang et al., 2004; Molders & Olson,
2004). The importance of accurately determining Fg can be
illustrated by looking at its impact on the estimation of latent heat
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flux (LE). LE is a function of meteorological conditions and
numerous surface properties, such as LAI, Fg, leaf stomatal
resistance, soil texture, and water volumetric content at different
depths. However, it is strongly dependent on Fg values, as
illustrated by three sensitivity studies (Fig. 1). Keeping all other
factors equal, a change of as much as 100Wm−2 in LE can occur
when varying Fg by only 0.2 (Gutmann & Small, 2007; Betts
et al., 1997; Jacquemin & Noilhan, 1990). As a result, accurate
estimation of Fg is crucial to better parameterize climate models.

Both Fg and LAI are normally inferred from Normalized
Difference Vegetation Index (NDVI), an index calculated from
reflectance measurements in the red and near-infrared wave-
lengths. These measurements are typically acquired by satellites
over large areas (scenes) divided into sub-units (pixels) that
represents the average reflectance over a smaller area. The
methodologies used to infer LAI and Fg differ. Models using
NDVI to derive LAI are based on empirical relationships (Qi et al.,
2000; Price & Bausch, 1995, Price 1993). Models used to derive
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Fig. 1. Influence of vegetation cover on latent heat (all other factors kept equal)
as computed from various land surface models.
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Fg are generally simple linear or quadratic combinations of two
endmembers: NDVI from dense (LAIN3) live vegetation and soil.
The difference in how LAI and Fg are modeled precludes studying
the impact of soil reflectance on LAI and Fg using the same
approach. Therefore, we focus only on Fg in this paper.

Common models to compute Fg include the linear Gutman
and Ignatov (GI) model (Gutman & Ignatov, 1998) and the
quadratic model (Carlson & Ripley, 1997). Both models are
popular due to their ease of implementation. This ease stems
partly from pre-selected values of NDVI for the soil and plant
endmembers. However, the selection of these parameters is
complicated by variations in spectral signals of vegetation due
to differences in species, plant health, leaf water content, and
other factors (Jensen, 2000). Likewise, the spectral signature of
soil varies, depending upon mineralogy, moisture, grain size, etc
(Baumgardner et al., 1985). In this paper, we primarily present
our results within the framework of the linear GI model,
although we include a discussion of the quadratic model. The
linear model is still the one commonly used in products such as
the community NOAH Land-Surface Model (Mitchell, 2001)
and the NAM Eta model (Gallo et al., 2003).

Addressing the spatial variability of plant and soil reflectance
requires extensive in situmeasurements, which is unrealistic for
most applications. As a result, both the linear and quadratic
models are normally parameterized using single estimated soil
NDVI (NDVIo) and live vegetation NDVI (NDVI∞) values. The
common technique to estimate the two endmembers is to infer
them from the data themselves. NDVI∞ can be selected as the
highest NDVI value within the scene (Li et al., 2003; Gallo et
al., 2001; Gutman & Ignatov, 1998). Alternatively, the scene
can be split into biomes and the maximum value can be selected
from each (Matsui et al., 2005; Zeng et al., 2000; Oleson et al.,
2000). NDVIo is commonly inferred from the historical lowest
NDVI values within the scene (e.g. GI approach). However,
many authors opt for the use of popular published NDVIo
values of 0.05 or less (Table 1). The minimum NDVI approach
is based on two important assumptions: (1) the pixels with the
lowest NDVI are free of vegetation (bare soil assumption) and
(2) the soil NDVI is the same everywhere in the scene (invariant
assumption). The first assumption is likely true, particularly
when studying large areas. However we show below that the
second assumption is not often valid.

Here, we investigate how the observed values and variability of
NDVIo can impact Fg calculations. First we examine several
datasets of soil NDVI to constrain the variability of soil reflectance
using both the Advanced Very High Resolution Radiometer
(AVHRR) and the Moderate Resolution Imaging Spectroradi-
ometer (MODIS) bands spectral response functions. We evaluate
the error on Fg introduced by underestimation of NDVIo for
several land cover types by comparing values computed using a
popular method to infer a single NDVIo from AVHRR and
MODIS data to values from the soil dataset. Then we look at how
this error varies throughout a typical year for the different land
cover types in the conterminous U.S. usingMODIS 16-day NDVI
imagery. We illustrate the spatial distribution of the error
throughout the U.S. with two examples: the error for April and
June 2003 as derived from MODIS 16-day NDVI. These two
images were selected to represent both a time of the year with
overall low (April) and high (June) error. Finally we suggest a
method to compute an adjusted Fg estimates and illustrate its
impact on Fg time series at a grassland and shrubland site.

We limit this study to the problems resulting from the bare soil
and invariant assumptionswhen usingNDVI in linearmodels such
as the linear GImodel and how it impacts Fg estimations. Previous
work addressing the issue of the interaction of soil reflectancewith
overlying vegetation yielded alternatives to NDVI such as the Soil
Adjusted Vegetation Index (SAVI, Huete, 1988), Generalized
SAVI (GESAVI, Gilabert et al., 2002), and Transformed SAVI
(TSAVI, (Baret & Guyot, 1991). It is important to note that these
indices offer low sensitivity to soil background noise and are
possible alternatives to the use of NDVI.

2. Methods

NDVI is computed from reflectance measurements in the red
(R) and near-infrared (NIR) wavelengths:

NDVI ¼ NIR� R
NIRþ R

ð1Þ

The GI model is used to relate Fg to NDVI values with a
linear mixing model:

Fg ¼ NDVIpixel � NDVIo
NDVIl � NDVIo

ð2Þ

where NDVIpixel is the pixel NDVI value, NDVIo is the bare soil
NDVI, and NDVI∞ is the live vegetation NDVI. This linear
mixing model is based on the assumption that vegetation is
dense where it exists, with a LAI≥3. Alternatively, other
authors (Carlson & Ripley, 1997; Choudhury et al., 1994) have
suggested a quadratic relationship between Fg and NDVI:

Fg ¼ NDVIpixel � NDVIo
NDVIl � NDVIo

� �2

ð3Þ



Table 1
Examples of NDVIo and NDVI∞ used in recent publications

Paper and study area NDVIo NDVI∞ Dataset used in the study Parameter determination

Gutman and Ignatov (1998) 0.04 0.52 Global AVHRR NDVI Desert annual minimum (NDVIo)
and evergreen annual maximum
(NDVI∞) NDVI

Global

Yang and Yang (2006) 0.05 0.49 grassland AVHRR 10-day NDVI
composite over China

Zeng et al. (2000) values
0.60 open
shrubland

China

0.68 mixed forest
0.70 broadleaf and
deciduous forests

Gan and Burges (2006) 0.04 0.52 Global AVHRR NDVI GI values
Eastern US
Gebremichael and Barros (2006) 0.05 0.52 open

shrubland
MODIS 16-day NDVI
over study area

Zeng et al. (2000) values for open shrubland
Mexico and Nepal

0.95 mixed forests
Matsui et al. (2005) 0.03 arid 0.52 arid Global monthly AVHRR NDVI Historical minimum and maximum over

20 years for different biomes.North America 0.04
seasonal

0.74 seasonal
NDVIo=3rd percentile

0.05
evergreen

0.67 evergreen
NDVI∞=97

th percentile

Li et al. (2003) 0.04 0.61 AVHRR reflectance over
North China

Steppe minimum (NDVIo) and maximum
(NDVI∞) NDVI values in 2001North China

Ek et al. (2003) 0.04 0.52 – GI values
North America
Sridhar et al. (2003) 0.04 0.52 Conterminous U.S.

AVHRR 14-day NDVI composite
GI values

Conterminous U.S.
Gallo et al. (2003) 0.09 0.69 Conterminous U.S. AVHRR

14-day NDVI composite
5-year average NDVI in January for the
North-central U.S.Conterminous U.S.
NDVIo=50th percentile of grassland and cropland
And yearly maximum NDVI for different biomes
NDVI∞=98th percentile of areas with dense
vegetation only

Oleson et al. (2000) 0.048 0.752 crop, grass,
desert, shrub

Conterminous U.S.
AVHRR 10-day NDVI composite

Monthly maximum NDVI over 5 years for
different biomes.Upper Mississippi Basin

0.816 mixed
woodland, forest

NDVIo=2nd percentile of desert
and semi-desert

0.824 broadleaf
deciduous

NDVI∞=98th percentile of groups of biomes

Zeng et al. (2000) 0.05 0.49 grassland Global AVHRR 10-day NDVI Maximum NDVI over 1 year time series
for different biomes:Conterminous U.S. 0.60 open

shrubland
composite

NDVIo=5th percentile of barren and sparsely
vegetated land areas0.68 mixed forest
NDVI∞=90th percentile (shrubland,
barren, sparsely vegetated), 75th percentile (other)

0.70 broadleaf and
deciduous forests
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In order to constrain NDVIo and its variability, we compiled
2906 reflectance spectra of soils collected worldwide from the
following datasets: (1) LARS at Purdue University available at
www.lars.purdue.edu, (2) ICRAF Soil Laboratory at www.
worldagroforestry.org, and (3) ASTER spectral library available
at speclib.jpl.nasa.gov. A majority of these spectra were
measured in the lab and might differ from field spectra values.
However a study by Stoner et al. (1980) suggests that lab wet
soil reflectances in the visible and NIR are similar to spectral
field values. For each soil, we computed two NDVI values
using the following band paths convolved by their corre-
sponding spectral response function: 1) AVHRR NOAA-16
band 1 (580–680 nm) and 2 (725–1100 nm) and 2) MODIS
Terra band 1 (620–670 nm) and 2 (841–876 nm). While the
LARS soil spectra were measured on wet soils, the distribution
of NDVI values of these soils is normal and similar to that of dry
soils (Fig. 2). We used this 2906 soils composite dataset to
compute statistically most-likely Fg estimate that, unlike current
methods, does not use a single soil NDVI value but takes into
account the observed soil NDVI variability to produce an
adjusted Fg estimate.

We calculated Fg by using pairs of NDVIo and NDVI∞ for
each land cover type defined by the International Geosphere–
Biosphere Program (IGBP). NDVIo was defined using two
approaches: 1) using an invariant NDVIo computed from a time
series of AVHRR andMODIS imagery for the conterminous U.S.
and 2) using a set of NDVIo from the soil dataset to compute a
number of possible Fg values whose mean is the most-likely
estimate. NDVI∞ values were computed using the imagery time
series of the first approach.

http://www.lars.purdue.edu
http://www.worldagroforestry.org
http://www.worldagroforestry.org
http://speclib.jpl.nasa.gov


Fig. 2. Histograms of NDVI values of the two soil databases (dashed line—80
wet soils, solid line—2826 dry soils) computed using corresponding AVHRR
(grey) and MODIS (black) spectral response functions.
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In our first approach, we used the method described in Zeng
et al. (2000) to compute the pairs of NDVIo and NDVI∞ for each
land cover types. For each pixel over the conterminous U.S., we
selected the highest NDVI of two 2003 time series: AVHRR 14-
Table 2
Description of the remote sensing datasets used for this study

AVHRR 14-day NDVI Global AVHRR 10

Product AVHRR NDVI biweekly
composites for the
conterminous U.S.

AVHRR 10-day glo
composite

Source USGS EarthExplorer
http://earthexplorer.usgs.gov/

USGS Earth Resou
Observation and Sc

Spatial resolution 1 km 1 km
Input data NOAA-16 calibrated

raw data
NOAA-12 calibrate

Composite 14-day 10-day
Atmospheric corrections The NOAA-16 radiance data

were corrected for ozone and
Rayleigh scattering only

Radiance data were
corrected for ozone
scattering only

Table 3
NDVIo, NDVI∞ values derived using Zeng et al. (2000) method on three time series:
(Zeng et al., 2000 values), B) conterminous U.S. AVHRR 14-day NDVI imagery fo

IGBP land cover type A global AVHRR B co

NDVI∞ Bare and shrubland 0.6 0.83
Grassland 0.49 0.61
Cropland and national vegetation mosaic 0.65 0.79
Cropland 0.61 0.81
Evergreen needleleaf forest 0.63 0.81
Deciduous broadleaf forest 0.7 0.85
Woody savanna 0.62 0.69
Mixed forest 0.68 0.85
Savanna 0.58 0.70
Evergreen broadleaf forest 0.69 0.79
Permanent wetland 0.56 0.57

NDVIo All land cover types 0.05 0.10

Also shown are the mean fractional vegetation cover as defined by Zeng et al. (200
day NDVI andMODIS 16-day NDVI. Additional information on
the imagery used is summarized in Table 2. We then produced
histograms of maximum NDVI values for each IGBP land cover
type. The 5th percentile of barren and sparsely vegetated land
was used as NDVIo. NDVI∞ was selected as the 90th percentile
for barren, sparsely vegetated and shrubland and the 75th
percentile for all other land cover types. Table 3 summarizes the
different pairs of parameters obtained. We included the values
obtained by Zeng et al. (2000) from a time series of global (i.e.
covering most of the Earth) AVHRR 10-day NDVI (Table 3A,
and Table 2). Note how the values derived from global scenes are
generally lower than the ones derived from conterminous U.S.
imagery and how MODIS-derived values are higher than the one
derived from coarser resolution AVHRR. We then used these
parameters along with Eqs. (2) and (3) to compute Fg. Here
NDVIo is invariant at 0.05 (global AVHRR), 0.10 (U.S.
AVHRR), and 0.07 (U.S. MODIS).

Our second approach was used to derive an adjusted estimate,
Fg⁎, that was computed using the same NDVI∞ as in Table 3.
However we varied NDVIo for each pixel using the n soil NDVI
values from our dataset that respect the linear mixing model
condition: NDVIo≤NDVIpixel (Fig. 3A). This yielded n Fg
-day NDVI MODIS 16-day NDVI

bal NDVI MODIS NDVI composite
for the conterminous U.S.

rces
ience http://edc.usgs.gov/

University of Maryland, Global
Land Cover Facility
http://glcf.umiacs.umd.edu/
250 m

d raw data MODIS daily Surface Reflectance
product (MOD09)
16-day

and Rayleigh
The MOD09 data include
correction for atmospheric gazes
(ozone, water vapor, etc.), aerosols
(e.g. Rayleigh scattering), and thin cirrus clouds

A) global AVHRR 10-day NDVI imagery between April 1992 and March 1993
r 2003, and C) conterminous U.S. MODIS 16-day NDVI imagery for 2003

nt. U.S. AVHRR C cont. U.S. MODIS Mean Fg % cont. U.S. cover

0.87 0.60 13.9
0.67 0.49 11.1
0.86 0.65 10.1
0.86 0.61 9.3
0.89 0.63 8.3
0.89 0.70 7.3
0.76 0.62 4.6
0.89 0.68 3.4
0.80 0.58 0.3
0.85 0.69 0.1
0.84 0.56 0.1
0.07 0

0), and the area of the U.S. covered by each IGBP land cover class.

http://earthexplorer.usgs.gov/
http://edc.usgs.gov/
http://glcf.umiacs.umd.edu/


Fig. 3. Sketch showing how Fg⁎ and its uncertainty σ are computed using all soils
from the database that respect the linear mixing model condition: NDVIo≤
NDVIpixel. A) For each pixel, the n soils whose NDVI are equal or smaller than the
NDVIpixel are identified and then used to computed n possible Fg values using the
linear or quadratic model (Eqs. (2) and (3)). B) The distribution of the resulting n
Fg values is then used to compute the most-likely estimate Fg⁎ (Eq. (4)) and its
uncertainty (Eq. (6)).
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values, which approximate a normal distribution (Fig. 3B). The
mean of the n values is statistically the most-likely Fg value and
therefore an adjusted estimate Fg⁎:

Fg⁎ ¼
Pn
i¼1

NDVIpixel�NDVIo;i
NDVIl�NDVIo;i

� �a

n
ð4Þ

where a is equal to 1 for the linear model, and 2 for the quadratic
model.

We then quantified the error on Fg estimation due to the
incorrect assignment of NDVIo, hereafter referred to asΔFg⁎. It
is the difference between the Fg values computed from the two
approaches for each pixel:

DFg⁎ ¼ Fg⁎� Fg ð5Þ
For pixels with NDVIpixelNNDVI∞, the Fg models saturate
and the Fg values were set to 1 indicating full vegetation cover
exists. Hence, ΔFg⁎=0 for these pixels.

The uncertainty on Fg⁎ values due to the variability of soil
NDVI was then estimated by computing the standard deviation
(r) of the resulting n Fg values for each pixel (Fig. 3B):

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

Fgi � Fg⁎

s
ð6Þ

The distribution of the n Fg values approximates a normal
distribution, regardless of the pixel value (see example in Fig. 3B).
Therefore, the adjusted Fg estimate has about a 68% chance of
being within the range defined by Fg⁎±σ, Fg⁎ remaining the
most-likely estimate.

In order to understand how the error (ΔFg⁎) varies throughout a
typical year, we computed for each land cover type the mean
NDVI value for each 2003 scene of theMODIS 16-dayNDVI time
series. Using these NDVI values, we calculated the corresponding
temporal Fg⁎ andΔFg⁎. Two NDVI 16-day MODIS images over
the conterminous U.S. were also selected to represent the spatial
distribution of the error. The two scenes were chosen by studying
the overall NDVI values over a four-year time series (2001–2004).
The MODIS June 10–26 2003 and April 7–23 2003 scenes were
the two images with the highest and lowest number of pixels with
large errors respectively (defined by the number of pixels with
ΔFg⁎N0.15).

Finally, in order to test our adjusted estimate Fg⁎, we
compared the standard Fg and Fg⁎ values with the one obtained
using in situ NDVIo measurements as ground truth. These
measurements were made in August 2006 at two locations
within the Sevilleta LTER in New Mexico: a black grama
grassland and a creosote shrubland site. These two sites were
selected as grassland and shrubland are the two most common
land cover types in the conterminous U.S. and represent areas
where the potential error is maximized. The soil at the grassland
site is a Turney sandy clay loam and the soil at the shrubland site
is a Bluepoint fine sand (United States Department of
Agriculture, 1988). Their respective NDVI are 0.12 and 0.09
and were computed from field spectra convolved by the MODIS
spectral response functions.

3. Results

3.1. Observed soil NDVI

Fig. 2 shows the distribution of the NDVI of the 2906 soil
samples computed using AVHRR and MODIS spectral
response functions. The mean soil NDVI values are the same
between the wet and dry soil datasets, and are 0.20 for AVHRR
band paths and 0.21 for MODIS band paths with a standard
deviation of 0.08 (wet) and 0.09 (dry). This result is consistent
with the computations made by Price and Bausch (1995) on a
smaller dataset.

The data summarized in Fig. 2 have two implications for the
calculation of Fg using GI or similar approaches. First, the mean



Fig. 4. Upper quadrants: Fg (solid lines) and corresponding Fg⁎ (dashed lines) computed for grassland (thick lines) and deciduous broadleaf forest (thin lines) using
three different pairs of NDVIo and NDVI∞: A) and B) Zeng et al. (2000) values derived from global AVHRR 10-day NDVI imagery, C) values derived from
conterminous U.S. AVHRR 14-day NDVI imagery, and D) values derived from conterminous U.S. MODIS 16-day NDVI imagery. The grey-shaded areas show the
uncertainty on Fg⁎ from Eq. (6). Lower quadrants: corresponding Fg overestimation, ΔFg⁎ (Eq. 5).

Table 4
Summary of the amount of overestimation on Fg due to underestimation of
NDVI0, and the uncertainty on the adjusted Fg⁎ estimate

A. Global AVHRR Grassland Deciduous broadleaf
forest

Over-
estimation

Max ΔFg⁎ 0.24 0.18
ΔFg⁎≥0.15 0.17≤NDVIpixel≤0.39 0.22≤NDVIpixel≤0.43

Uncertainty
on Fg⁎

Max σ 0.15 0.11
σ=max 0.30≤NDVIpixel≤0.35 0.32≤NDVIpixel≤0.37
σ≥0.10 0.20≤NDVIpixel≤0.42 0.28≤NDVIpixel≤0.4

B. AVHRR U.S. Grassland Deciduous broadleaf
forest

Over-
estimation

Max ΔFg⁎ 0.15 0.11
ΔFg⁎≥0.15 0.32≤NDVIpixel≤0.33 None

Uncertainty
on Fg⁎

Max σ 0.12 0.09
σ=max 0.31≤NDVIpixel≤0.37 0.33≤NDVIpixel≤0.40
σ≥0.10 0.24≤NDVIpixel≤0.43 None

C. MODIS U.S. Grassland Deciduous broadleaf
forest

Over-
estimation

Max ΔFg⁎ 0.17 0.13
ΔFg⁎≥0.15 0.25≤NDVIpixel≤0.39 None

Uncertainty
on Fg⁎

Max σ 0.11 0.08
σ=max 0.32≤NDVIpixel≤0.39 0.30≤NDVIpixel≤0.44
σ≥0.10 0.27≤NDVIpixel≤0.42 None

Results are shown for the linear model as computed using 3 different pairs of
NDVI0 andNDVI∞ (see Table 3) for both grassland and deciduous broadleaf forest.
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soil NDVI value is about five times larger than the NDVIo
derived from global scenes, i.e. 0.21 versus 0.03–0.05 and two
to five times larger than the values derived from local scenes,
i.e. 0.21 versus 0.04–0.10 (Table 1 and 3). These commonly
used NDVIo values are also equal to the lowest values of the
entire distribution of soil NDVI. This correspondence shows
consistency between the soil NDVI measured in situ and via
remote sensing. Second, given the variability of soil NDVI,
using a single NDVIo value for a whole scene is not appropriate,
particularly for continental scale studies.

3.2. Influence of NDVIo on Fg calculations

First, we show how Fg values differ when a NDVIo that is too
low is used instead of the statistically most-likely NDVIo, as
estimated from the soil database. The solid lines in Fig. 4 illustrate
the linear Fg models for grassland and deciduous broadleaf forest,
determined using three pairs of parameters: Zeng et al. (2000)
values derived from global AVHRR (Fig. 4A and B), values
derived from conterminousU.S.AVHRRNDVI imagery (Fig. 4C),
and values derived from conterminous U.S. MODIS NDVI
imagery (Fig. 4D). These two land cover types represent the two
extremes for NDVI∞, which yields the maximum andminimumFg
errors respectively. All other land cover types exist between these
two endmembers (see NDVI∞ values in Table 3). The dotted lines
in Fig. 4 show the adjusted estimate, Fg⁎, computed using the
distribution of soil NDVI from the soil database (Eq. (4)). Fig. 4
shows that the underestimation of NDVIo yields an overestimation
of Fg for most NDVIpixel values measured. This is illustrated by the
positive ΔFg⁎ values (Eq. (5)) in the lower quadrants of Fig. 4.

For grassland, the land cover with the largest error, ΔFg⁎

exceeds 0.15 for pixels with 0.17≤NDVIpixel≤0.39 and reaches
a maximum of 0.24 when using the parameters derived from
global scenes along with the linear model (Fig. 4A). This error is
reduced when using parameters derived from corresponding local
scenes (here the conterminous U.S.) and reaches 0.15 for AVHRR
and 0.17 for MODIS. For deciduous broadleaf forest, the land
cover type associated with the smallest error, ΔFg⁎ exceeds 0.15
for pixels with 0.22≤NDVIpixel≤0.43 and reaches a maximum
of 0.18 when using globally derived parameters. This sensitive



Table 5
Same as Table 4, but using the quadratic model

A. Global AVHRR Grassland Deciduous broadleaf
forest

Over-
estimation

Max ΔFg⁎ 0.21 0.14
ΔFg⁎≥0.15 0.26≤NDVIpixel≤0.43 None

Uncertainty
on Fg⁎

Max σ 0.13 0.08
σ=max 0.36≤NDVIpixel≤0.41 0.43≤NDVIpixel≤0.52
σ≥0.10 0.31≤NDVIpixel≤0.44 None

B. AVHRR U.S. Grassland Deciduous broadleaf
forest

Over-
estimation

Max ΔFg⁎ 0.12 0.08
ΔFg⁎≥0.15 None None

Uncertainty
on Fg⁎

Max σ 0.09 0.06
σ=max 0.38≤NDVIpixel≤0.48 0.46≤NDVIpixel≤0.63
σ≥0.10 None None

C. MODIS U.S. Grassland Deciduous broadleaf
forest

Over-
estimation

Max ΔFg⁎ 0.13 0.09
ΔFg⁎≥0.15 None None

Uncertainty
on Fg⁎

Max σ 0.08 0.06
σ=max 0.40≤NDVIpixel≤0.52 0.52≤NDVIpixel≤0.61
σ≥0.10 None None

Fig. 5. Example of typical NDVI seasonal cycle for seven different land cover
derived from conterminous U.S. MODIS 16-day NDVI imagery. The curves
were derived using the mean NDVI value for each land cover type.
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range, forwhichΔFg⁎≥0.15, varies depending on the land cover,
moving towards larger NDVI values as the NDVI∞ increases.
However, for the parameters derived here, the sensitive range
remains around 0.2≤NDVIpixel≤0.4. These results are summa-
rized in Table 4.

Fig. 4B show the results for the quadratic model (Eq. (3))
applied to Zeng et al. (2000) parameters. Here themaximumΔFg⁎

error is smaller and occurs at higher NDVI values than for the
corresponding linear model. ΔFg⁎ then decreases for both lower
and higher NDVI values, similar to the linear model. For example,
the quadratic model yields a maximumΔFg⁎ of 0.21 for grassland
versus 0.24 using the linear model, and 0.14 (quadratic model)
versus 0.18 (linear model) for deciduous broadleaf forest when
using globally derived parameters. The sensitive range of the
quadratic model is also narrower, meaning that the range of NDVI
values at which the overestimation is the largest is less than for the
linear model. For grassland, the ΔFg⁎ error exceeds 0.15 for
0.26≤NDVIpixel≤0.43 with the quadratic model against
0.17≤NDVIpixel≤0.39 for the linear model. The quadratic
model results are summarized in Table 5.

3.3. Uncertainty on the adjusted estimate

Because Fg⁎ is a statistical estimate, it is accompanied by an
uncertainty, σ, defined in Eq. (6). As discussed in Section 2, the
range defined by Fg⁎±σ (grey-shaded areas in Fig. 4) includes
68%of the possible adjusted Fg estimates.When using parameters
derived from global scenes and the linear model, σ is the highest
(±0.15) for 0.30≤NDVIpixel≤0.35, and is larger than ±0.1 for
0.20≤NDVIpixel≤0.42 for grassland. For deciduous broadleaf
forest, σ is the highest (±0.11) for 0.32≤NDVIpixel≤0.37, and is
larger than ±0.1 for 0.28≤NDVIpixel≤0.42. The maximum σ is
smaller when using parameters derived from local scenes, i.e.
σ=0.12 for AVHRR andσ=0.11 forMODIS. Table 4 summarizes
the uncertainties on Fg⁎ for both land cover types and include the
corresponding values for the local AVHRR and MODIS scenes.

It is important to consider this uncertainty because, althoughFg⁎

and ΔFg⁎ have been defined as the most-likely Fg value and
associated error, the uncertainty in Fg⁎ implies that there can still be
instances of larger overestimation. For example, consider a
grassland pixel with NDVI=0.3. The most-likely Fg (Fg⁎) for
that pixel is 0.33 when using the global AVHRR parameters
(Table 3A) along with the linear model. But in reality the adjusted
Fg estimate has a 68% chance of being anywhere between 0.18 and
0.48 (0.33±0.15). Comparing this range to Fg=0.57, the value
obtained using Zeng et al. (2000) parameters, the potential over-
estimation of Fg can be as much as 0.39. This overestimation is
large compared to some natural cycles such as seasonal variability
in semi-arid environments, and underlines the importance of better
defining NDVIo.

3.4. Seasonal variability of the overestimation relative to the
Fg signal

The timeof the year at which theΔFg⁎ error ismaximumvaries
due to differences in land cover NDVI seasonal cycles. This can be
illustrated by mean NDVI time series for different locations and
land cover computed from the meanMODIS 16-dayNDVI values
of each land cover type over the year 2003 (Fig. 5). In areas with
strong seasonality (e.g. croplands and deciduous broadleaf forests),
the error is maximum (within the 0.2bNDVIpixelb0.4 sensitive
range) in the spring and in thewinter, when photosynthetic activity
is small andNDVI values arewithin the sensitive range. In the case
of grasslands, the seasonality of its NDVI is less than for deciduous
forests and croplands. GrasslandNDVI peaks at around 0.4, which
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yields large overestimation throughout a typical year. The same
can be said for shrublands, where vegetation remains fairly stable
throughout a typical year. In areas covered by evergreen forest,
the NDVI values are large throughout the year so that the over-
estimation in these areas remains small.

We now compare the amplitude of the overestimation to the
one of the Fg signal. Fig. 6 summarizes theΔFg⁎ and Fg⁎ for the
six most common land cover types in the conterminous U.S.
(Table 3). Each point shows the Fg⁎ value computed using the
mean NDVI values illustrated on Fig. 5 and the parameters in
Table 3C. In the case of both evergreen needleleaf forests and
open shrublands, the overestimation remains below 0.1,
however the relative overestimation for both land cover types
is different. Because the Fg signal for evergreen needleleaf
forests is large throughout the year, the relative overestimation
remains under 25%. In the case of open shrublands however, Fg
is low (b0.2) throughout the year. As a result, the relative
Fig. 6.ΔFg⁎ and Fg⁎ values for the six most common land cover types (bare excepted)
NDVI data. Each curve shows the range of values derived from the mean NDVI value o
show the amount of relative Fg overestimation linked to the underestimation of NDV
overestimation is large (25–100%). In the case of closed
shrublands and grasslands, the overestimation is equal to or
larger than 25% of the Fg value throughout most of the year. As
for croplands and deciduous forests, the relative overestimation
strongly oscillates and is negligible in the summer and fall, but
can be large in the spring and winter (up to 100% the Fg signal).

As a result of the dependence of error on seasonality, the
areas in the U.S. where the Fg overestimation is the largest
migrate across the landscape as NDVI values fluctuate through
time (Fig. 7). The overestimation affects the greatest areas in the
spring and winter, as illustrated by the April 2003 data (Fig. 7D)
for which 44% of the pixels have ΔFg⁎N0.10, compared to
28% in June 2003 (Fig. 7E). Although the overestimation is
larger overall in April 2003, the maximum errors (ΔFg⁎N0.15)
occupy about the same portion of the U.S. (7% of the pixels)
than for the June data (5%). This is explained by the fact that in
June, most U.S. grassland NVDI values reach the sensitive
in the conterminous U.S. as computed from the 2003 time series ofMODIS 16-day
f each image (dots colors indicate the number of observations). The dashed isolines
Io.



Fig. 7. Maps of the conterminous U.S. showing A) IGBP-based land cover classification, B) MODIS 16-day NDVI data for April 7 2003, C) MODIS 16-day NDVI data for June 10 2003, and ΔFg⁎ errors computed
using NDVIo and NDVI∞ in Table 3C from the D) April, and E) June NDVI values.

1843
L
.M

.
M
ontandon,

E
.E
.
Sm

all
/
R
em

ote
Sensing

of
E
nvironm

ent
112

(2008)
1835–1845



1844 L.M. Montandon, E.E. Small / Remote Sensing of Environment 112 (2008) 1835–1845
range, yielding maximum overestimation in a large part of the
U.S. (most red areas in Fig. 7E are grassland).

4. Validation

We showed that underestimating NDVIo yields an overesti-
mation of the green vegetation fraction. We also showed that this
overestimation can be large relative to the Fg of some land cover
types (in particular grassland and shrubland), and can vary with
Fig. 8. Comparison of Fg values computed with different NDVIo at two locations
within the Sevilleta LTER: A) a black grama grassland on Turney sandy clay loam
with soil NDVI=0.12, and B) a creosote shrubland on Bluepoint fine sand with
soil NDVI=0.09. The Fg values were computed using the corresponding NDVI∞
(Table 3C) along with 1) in situ NDVIo measurements (black solid line),
2) NDVIo=0.07 (Table 3C, grey solid line), and 3) a range of NDVIo from the soil
database that respect the condition NDVIo≤ lowest NDVIpixel (grey dashed line)
as illustrated in C) for the shrubland site.
seasons. Because NDVIo can vary significantly between soils
(Fig. 2) it is important to find a way to better constrain NDVIo.

When no information on soils is available, the most popular
method to estimateNDVIo is to use the lowest NDVI values of the
studied scene. This method does not take into account the spatial
variability of soils and tends to underestimate NDVIo. Instead, we
suggest using soil NDVI databases to compute a statistically
most-likely Fg value as described by Eq. (4). With this statistical
method, each pixel Fg is computed from all NDVIo samples that
satisfy the NDVIo≤NDVIpixel condition. When dealing with
temporal NDVI data, the range of possible NDVIo values can be
further constrained by using the historical lowest NDVI of each
pixel so that NDVIo≤ lowest NDVIpixel.

Fig. 8 shows how this new approach affects Fg estimates. It
compares the Fg values computed using 3 different methods to
estimateNDVIo: 1) using the in situNDVIomeasurementsmade at
the grassland and shrubland Sevilleta LTER sites described earlier,
2) using Zeng et al. (2000) method as described in section 2, here
NDVIo=0.07 as derived from local MODIS time series, and
3) using for each pixel all samples from the soil database with
NDVIo≤ lowestNDVIpixel. TheminimumNDVI used to constrain
the possible NDVIo were inferred from a series of 2002 to 2004
MODIS 16-day NDVI data and are 0.13 for the grassland and 0.12
for the shrubland. As Fig. 8 shows, in both examples, the Fg
computed using the historical minimum NDVI at each pixel along
with the soil database yields much better estimates than the
standard method using a single invariant NDVIo for each land
cover type. In these two examples, the Fg estimate is adjusted by
52%, on average, for the grassland and 86% for the shrubland.

An alternative to the method we suggest here could be to use
only the historical lowest NDVI value of each pixel as NDVIo.
However, this method is only valid for pixels that are over bare
soil areas or where plants photosynthesis activity stops during
part of the year (Fg=0). These conditions are hard to meet for
most MODIS pixels, particularly because one pixel averages the
reflectance signal over large (250×250 m) areas.

5. Conclusions

The soil reflectance data available from several datasets show
that soils have a highly variable NDVI and that the mean value
(0.20–0.21) is much larger than the NDVIo commonly used in Fg
models (≤0.05). As NDVI values for soils are not always avail-
able, NDVIo is generally inferred from the lowest NDVI value
within a local remote sensing scene. This approach requires two
assumptions to be true: the pixel with the lowest soil NDVI is free
of vegetation (bare soil) and the soil spectral properties are in-
variant within the studied area. However, the soil dataset suggests
that the invariant assumption is likely to be false. As a result,
NDVIo is generally underestimated which yields overestimations
of Fg. This problem is most severe in areas with sparse vegetation
cover (e.g. grassland and shrubland)where typical seasonalNDVI
values are in the sensitive range (0.2bNDVIpixelb0.4) which
results in the largest Fg overestimation.

Our results suggest that the overestimation is not as great when
using the quadratic model (Eq. (3)) instead of the linear GI model
(Eq. (2)). Also, NDVIo and NDVI∞ parameters should be derived
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from local scenes. Using global values, such as those suggested
by GI, yields larger overestimations (Tables 4 and 5). Most land
cover types are affected by the overestimation as, apart from
evergreen needleaf forests, they all reach the sensitive range at
some time of the year. Shrubland and grassland areas are affected
most strongly. Their NDVI tends to remain 0.2bNDVIpixelb0.4
throughout a typical year and the error, often equal to the actual
Fg, reaches up to 0.24 when using globally derived NDVIo and
NDVI∞. The overestimation in deciduous broadleaf forests and
croplands is large in the spring and winter (up to 0.18 when using
globally derived NDVIo and NDVI∞ ) but is negligible in the
summer.

Because using an underestimated NDVIo can have a large
impact on Fg computations, we recommend using NDVIo
databases to derive adjusted estimates of Fg. Using in situ data
at a grassland and a shrubland site at the Sevilleta LTER, we
showed that combining this database with temporal NDVI
information for each pixel can yield better estimations of Fg than
using global invariant NDVIo values estimated from whole
scenes. At the two sites the Fg estimation was adjusted by 52%
and 86% for the grassland and shrubland respectively. Taking into
account soil NDVI variability when using Fg models such as GI
shows significant potential in improving Fg estimates. However
more research is needed to quantify the degree of improvement
this technique might provide. More significant advances will
require information on the spatial distribution of soil reflectance.
Additional spatial information, such as soil maps, might be useful
to better constrain soil reflectance if a correlation exists between
soil classifications and soil reflectances.
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