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[1] Proper selection of parameters for a land surface model
is critical, but is difficult due to the lack of data and
difficulties in scaling existing data. In particular, the spatial
distribution of Soil Hydraulic Properties (SHPs) is not well
known. This study focuses on the effect of SHP selection on
modeled surface fluxes following a rain storm in a semi-arid
environment. SHPs are often defined based on a Soil
Texture Class (STC). To examine the effectiveness of this
approach, we run the Noah land surface model with each of
1306 soils in a large SHP database. Within most STCs, the
outputs have a range of 350 Wm�2 for latent and sensible
heat fluxes, and 8K for surface temperature. The average
difference between STC median values is only 100 Wm�2

for latent and sensible heat. STC explains 5–15% of the
variance in model outputs and should not be used to
determine SHPs. Citation: Gutmann, E. D., and E. E. Small

(2005), The effect of soil hydraulic properties vs. soil texture in

land surface models, Geophys. Res. Lett., 32, L02402,

doi:10.1029/2004GL021843.

1. Introduction

[2] Soil hydraulic properties (SHPs) play a critical role in
land surface models (LSMs). SHPs define the relationship
between soil moisture (q), hydraulic head (y), and hydraulic
conductivity (K), thus controlling how water moves through
the soil. This movement controls the water balance parti-
tioning between evapotranspiration and runoff. In addition,
the availability of soil moisture at different depths in the soil
column controls the partitioning of the two key energy
fluxes of concern in climate models, latent and sensible
heat. Moisture availability also controls the partitioning
between evaporation and transpiration which has implica-
tions for carbon cycling. LSMs have evolved substantially
in the last 30 years, both in physics and techniques. Here,
we focus on the hydrology component of LSMs, which has
evolved from a single-layer ‘‘bucket’’ model [Manabe,
1969] to a multi-layer solution to the Richards equation
[Dickinson et al., 1993; Mahrt and Ek, 1984; Sellers et
al., 1986]. More recently, the focus has shifted towards
‘‘greening’’ LSMs by including complex vegetation com-
ponents [e.g., Sellers et al., 1986]. These models have
been criticized for the discrepancy between the complexity
of above-ground processes, and the simplicity of below-
ground processes [Pitman, 2003]. The evolution of LSMs
has not balanced the importance of SHPs with that of other
model components. As the parameterization of hydrologic
processes becomes more complex, the importance of accu-

rately identifying SHPs will increase. Pitman [2003] targets
the improvement of hydrologic processes in LSMs as one of
the key challenges for future work, and comments on the
need for global data sets of SHPs. Some of the most
promising work on the more general problem of parameter
estimation is by Vrugt et al. [2003].
[3] SHPs are difficult to measure, thus researchers have

often relied on relationships between SHPs and soil texture.
Numerous methods have been developed for the measure-
ment of SHPs, but most are time-consuming and expensive
[Stolte et al., 1994]. For this reason, pedotransfer functions
(PTFs) have been developed to translate more readily
available soil texture data or soil texture class into SHPs
[Wosten et al., 2001]. Soet and Stricker [2003] note sub-
stantial variability between SHPs derived using different
PTFs. In addition, none of the PTFs tested captured the
variability measured in the field. This suggests that the
relationship between SHPs and soil texture may not be very
strong.
[4] In many LSM applications, simple PTFs are used to

estimate SHPs according to soil texture class. This approach
is based on the assumption that there is a one to one
mapping between soil texture class and SHPs. However,
there is little evidence that this is the case. Indeed, there
appears to be more variability of the van Genuchten ‘‘n’’
[van Genuchten, 1980] SHP within a soil texture class then
there is between classes (Figure 1).
[5] The uncertainty in determining SHPs from texture

requires the land surface modeling community to question
the use of soil texture class as a proxy for SHPs. To
determine the error associated with using soil texture class
as a proxy for SHPs, we need to know the effect this has on
model output. To that end we examine output from the
Noah LSM when run with a variety of SHPs from a large
database of SHPs, as compared to output when run with the
average SHPs for a given soil texture class.

2. Methods

2.1. Soils Database

[6] We used the SHP database of Schaap and Leij [1998]
to perform this study. This database is a collection of 3 other
databases (RAWLS, AHUJA, and UNSODA), and as such
it is one of the largest SHP databases available. This
database contains 1306 soils with retention and saturated
conductivity measurements. This database is biased towards
coarser textured soils, it contains 253 sands and but only
60 clays. Only three soil texture classes in the database are
represented by fewer than 50 soils. This database is based
on lab and field measurements of relatively small soil
samples that would cover an area around 100 cm2. These
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are likely to show more variable SHPs than would be seen
in SHPs derived at the larger scales used in LSMs (0.1–
1000 km2). However, features such as macropores and
calcite horizons will introduce additional variability at the
field scale not captured in small scale measurements.
Currently, no large database of SHPs measured at the
LSM scale exists, and properly scaling SHPs from small
scale measurement to LSM scales requires multiple SHP
measurements from the same location [Zhu and Mohanty,
2002].

2.2. Soil Hydraulic Property Model

[7] We used the soil hydraulic property model of van
Genuchten [1980]. Several SHP models exist to estimate the
relationship between soil moisture, hydraulic conductivity,
and hydraulic head. The SHP database of Schaap and Leij
uses the van Genuchten model, and translating between
SHP models is difficult [e.g., Morel-Seytoux et al., 1996]. In
addition, the van Genuchten model has been shown to fit
measured data better and does not suffer from numerical
problems when fitting SHP parameters to data [Milly, 1987].

2.3. Modeling

2.3.1. Land Surface Model
[8] We used the Noah land surface model [Chen and

Dudhia, 2001] to examine the effects of SHPs on LSM
fluxes. Noah is based on the OSU land surface model
[Mahrt and Ek, 1984]. The hydrologic component of the
model solves the diffusion form of the Richards equation in
one dimension and we used the van Genuchten [1980]
model for the relation between hydraulic head, moisture
content, and hydraulic conductivity. The standard Noah
model uses the Cambell SHP model [Campbell, 1974],
but for the reasons outlined above we used the van Gen-
uchten formulation. The fluxes at the land surface are
determined to conserve both mass and energy based on a
Penman type combination equation.
2.3.2. Site Parameters, Boundary and
Initial Conditions
[9] Weather forcing data for the Noah model were

collected from the Sevilleta National Wildlife Refuge and

LTER grassland site of Kurc and Small [2004]. This is a
semi-arid site with 50% vegetation cover, but only 25% is
active [Matsui et al., 2003]. The following data were
collected: air temperature, pressure and humidity, wind
speed, and both short and longwave downward radiation.
Data were collected at a reference height of 2 m. Surface
roughness (0.03 m) was determined as one tenth the height
of vegetation cover. Albedo (0.14) was determined from
measurements of incoming and outgoing radiation. The soil
at the site is classified as a sandy loam, and measurements
of SHPs at the site are close to the average SHPs for sandy
loams in the SHP database. Table 1 summarizes the non-
SHP parameters used in the model.
[10] We ran the Noah LSM once for each soil in the SHP

database of Schaap and Leij [1998]. We initialized the
model soil moisture as dry, consistent with observations at
this site [Small and Kurc, 2003], and the model was allowed
to spin up for 18 months. To determine the model sensitivity
to SHPs, we analyzed model output following a large rain
storm (30 mm) on September 10th 2002 (day 261). We
analyzed mid-day average flux values (11AM–2PM) on the
following day (day 262). We ran the model both with and
without vegetation. Although active vegetation covers 25%
of the ground at the site, bare soil runs allow us to simplify
the system to see the impact of SHPs more directly, and our
results focus on these simulations.

3. Results/Discussion

[11] For all soils, latent heat flux (LE) is low (0–
150 Wm�2) before the storm. It rained 30 mm over 12 hours
on day 261. In all cases, LE increases sharply following the
storm (Figure 2). However, the peak values of LE vary
greatly between soils. To quantify the differences in dry-
down curves we look at mid-day LE on the day after the
storm (day 262; Figure 3).
[12] LE values varied more within a soil texture class

then they do between soil texture classes. On average, mid-
day LE varies by 350 Wm�2 within a soil texture class.
However, the median value of each class varies by only
210 Wm�2 (Table 2). This indicates that soil texture class
has less impact on LE than the variability of SHPs within a
class have. It is evident from Figures 2 and 4 that this result
would be the same if we looked at any of the days following
the storm. There is only one exception to this, the sand
texture class.
[13] The sand texture class is significantly different from

all other soil texture classes (Figure 4). Within the sand
class, LE varies by only 110 Wm�2, and 75% of LE
modeled output for sands fall between 0 and 16 Wm�2 on
day 262. In contrast, most non-sands fall between 150 and
350 Wm�2. Though loamy sands also stand out on some

Figure 1. Variability of van Genuchten ‘‘n’’ parameter
within each soil texture class. Boxes represent the middle
50% of sample, bars represent the full range, and middle
lines are the median value. Numbers on top are the number
of samples used in each class.

Table 1. Table of Non-SHP Model Parameter Inputs

Variable Value Definition

NLayers 8 Number of model soil layers
ZSoil(1) 5 cm Top soil layer thickness
RSmin 40 sm�1 Minimum stomatal Resistance
RootDepth 35 cm Depth to which roots extend
Tbot 287.5 K Bottom soil temperature
Fg 0 or 0.25 Active vegetation cover
Zo 0.08 m Roughness length

L02402 GUTMANN AND SMALL: SOIL HYDRAULIC PROPERTIES IN LSMs L02402

2 of 4



days, they show substantial overlap with other classes. It is
critical that LSMs can distinguish between more than just
sand and non-sand because, according to a larger soils
survey of 15737 soils across the United States, sands make
up only 5% of soils [Carsel and Parrish, 1988].
[14] To quantify the degree to which soil texture vs SHPs

control model output, we calculate coefficients of determi-
nation (r2) for different predictor variables (texture class,
particle size distributions, van Genuchten ‘‘n’’, Ks) and
different fluxes. The van Genuchten ‘‘n’’ parameter explains
the vast majority of variance in modeled LE output (79%;
Table 2). In contrast, soil texture class explains only 16% of
the variance in modeled LE, and much less of the variance
in other fluxes. When sands are included, this number
increases to 41%. This large change is due to the fact that
sands are very distinct from all other soils, but they are
uncommon in nature and we treat them as an outlier. It is

possible to improve on soil texture class by using the
particle size distributions (% sand, silt, and clay). However,
even with the additional information, it is only possible to
explain 44% of the variance in LE. Though we have
focused on the latent heat flux in this paper, a similar
pattern is seen for all fluxes (Table 2). The results are
similar when vegetation is included in the model, only 5%
of LE variance is explained by soil texture class, while 72%
is explained by n (Table 2). The model runs that contain
vegetation are similar to those without because vegetation is
very sparse in this area, and the primary difference in
Noah’s simulation of transpiration vs evaporation is the
depth it can draw water from, and the shape of the moisture
limitation curve. At this site soil moisture is primarily in the
upper soil layers, so water is equally available for evapora-
tion and transpiration. The limited utility of soil texture is
expected given the imperfections of pedotransfer functions,
as demonstrated by the variability in SHPs generated with
different pedotransfer functions by Soet and Stricker [2003].
This may be a slight over estimate of the range of output
values as the SHPs used are based on small soils samples
which may show more variability than site scale SHPs.
However, it is unlikely that using SHPs derived at an

Figure 2. Time series of latent heat flux before during and
after a rainstorm. Inverted dark bars show the distribution of
30 mm of rainfall on day 261 (lt.grey). Statistics for Table 2
come from day 262 (dk.grey). (top) 50 random samples
from the sandy loam soil texture class. (bottom) 50 random
sample from the silt loam soil texture class. A random
subset is presented because if all soils are shown, it becomes
impossible to distinguish individual lines.

Figure 3. Variability of mid-day latent heat flux resulting
from the variability of SHPs within each soil texture class
on the day after a rain storm (day 262). Bars and boxes as in
Figure 1.

Table 2. Summary of r2 Values for Different SHP and Texture

Predictor Variables, and Average Range of Output Values Within

and Between Soil Texture Classes (Txt.Cls)a

Predictor LE LE(veg) H Ts

log(Ks) 0.31 0.26 0.35 0.34
1/n 0.79 0.72 0.80 0.80
Txt.Cls. 0.16 0.05 0.13 0.13
Txt.Cls.(w/Sand) 0.41 0.24 0.42 0.39
log(S.Si.C.) 0.18 0.21 0.12 0.12
log(S.Si.C.)(w/Sand) 0.44 0.41 0.43 0.41

Average Range within Txt.Cls. 347W
m2 322W

m2 290W
m2 7.7 K

Range of Txt.Cls. medians 207W
m2 156W

m2 125W
m2 3.3 K

aLE:Latent Heat Flux (bare soil and with vegetation), H:Sensible Heat
Flux, Ts:Skin Temperature. To remove the bias towards sandy soils in the
SHP database, we randomly selected 40 soils from each soil texture class
when computing r2. If a class contained fewer than 40 soils, all soils in that
class were used. This process was repeated with 1000 different random
samples.

Figure 4. Variability of mid-day latent heat flux over a
drydown period. 30mm of rain occurred on day 261 (lt.grey).
Statistics in Table 2 and box-whisker plot in Figure 3 use day
262 (dk.grey). Bars and boxes as in Figure 1.
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appropriate scale would substantially improve the correla-
tion with texture class.

4. Conclusions

[15] The use of soil texture class alone is an inadequate
method of determining SHPs for LSMs. The main functions
of LSMs in climate and weather modeling is the calculation
of energy and moisture fluxes to the atmosphere. Of the
total variance in these fluxes, soil texture class accounts for
only 4–14%, while the van Genuchten ‘‘n’’ SHP alone
accounts for 80%. If particle size fractions are used, it is
possible to explain up to 30% of the variance, but, this is
still far short of ideal. These results are consistent for all
surface fluxes in the model, with and without vegetation
cover, and indicate the importance of understanding SHPs,
at least for the semi-arid environment modeled here.
[16] Our results indicate that a global data set of SHPs is

necessary for accurate land surface modeling. Currently,
soil texture class is used as a proxy for SHPs, but this is
clearly inadequate. Particle size fractions yield more infor-
mation, but a global map of SHPs would be a vast
improvement. Due to the inherent difficulties of measuring
SHPs directly, we suggest that this dataset must be con-
structed via inverse modeling based upon remotely sensed
data sources such as skin temperature derived from IR
measurements or soil moisture derived from active or
passive microwave systems [e.g., Burke et al., 1998]. These
methods have the further advantage of deriving SHPs at
a scale commensurate with LSMs, as compared to conven-
tional methods which measure SHPs over a small
(�100 cm2) area.
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