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Validation of GPS-IR Soil Moisture Retrievals:
Comparison of Different Algorithms to Remove

Vegetation Effects
Eric E. Small, Kristine M. Larson, Clara C. Chew, Jingnuo Dong, and Tyson E. Ochsner

Abstract—The GPS interferometric reflectometry (GPS-IR)
technique can be used to estimate near-surface soil moisture from
signal-to-noise ratio (SNR) data collected with standard geodetic
instrumentation. However, the effects of vegetation on GPS-IR soil
moisture retrievals must be considered in some environments. In
situ soil moisture observations from 11 GPS sites are used to com-
pare the performance of three different retrieval algorithms that
represent vegetation effects with different degrees of complexity.
A bare-soil retrieval algorithm does not perform well, even at sites
where seasonal variations in vegetation water content (VWC) are
less than 1 kg m−2. The range of volumetric soil moisture (VSM)
is too large due to the effects of vegetation on phase of the SNR
interferogram, yielding an RMSE between in situ and GPS-IR
VSM of 0.055 cm3 cm−3. Errors are reduced by an algorithm
that adjusts for vegetation effects using variations in the ampli-
tude of the SNR interferogram. RMSE is 0.038 cm3 cm−3 using
this algorithm, below the typical limit required for validation of
satellite data. This simple vegetation algorithm performs poorly at
sites where seasonal variations in VWC are 1 kg m−2 or greater.
A more complex algorithm, that uses amplitude in conjunction
with frequency analysis of the SNR interferogeram to predict veg-
etation effects, provides acceptable performance at these sites (
RMSE = 0.039 cm3 cm−3). The additional complexity of this
algorithm is only warranted at sites where the simple vegetation
algorithm cannot adequately represent the effects of the vegetation
fluctuations.

Index Terms—Global positioning system, hydrologic measure-
ments, remote sensing, soil measurements.
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I. INTRODUCTION

T HE GNSS reflections measured by ground-based
receivers can be used for monitoring near-surface soil

moisture, an important hydrologic state variable [1]. Soil
moisture estimated from GNSS reflections is particularly
useful because the sensing footprint is orders of magnitude
larger than that from typical soil moisture sensors [2]. One
ground-based approach is to use an antenna–receiver system
designed specifically to measure reflections from the land
surface [3]–[5]. Alternatively, it is possible to use existing
geodetic-grade instruments that are found in operational
networks [6]. The latter approach is the focus of this paper.

Geodetic-grade instruments were not designed or installed
to estimate soil moisture from GNSS reflections. However,
there are thousands of these instruments operating worldwide,
providing a cost-effective approach for monitoring hydrologic
land surface conditions for applications such as satellite val-
idation [7]. The basic observation is the interference pattern
of the observed signal-to-noise ratio (SNR) that results from
the interaction between the direct and ground-reflected signal
[Fig. 1(a)]; thus, this method is referred to as GPS interfero-
metric reflectometry (GPS-IR). The GPS-IR technique has been
applied to data collected from both geodetic-grade (e.g., [6])
and specially designed systems (e.g., [3]). GPS-IR differs from
GNSS-reflection methods that are based on changes in the auto-
correlation of the received and replica carrier signals at longer
delays (e.g., [8], [9]).

As for all remote sensing techniques, it is necessary to vali-
date the GPS-IR technique to quantify its accuracy (e.g., [10]).
In this paper, we evaluate the accuracy of GPS-IR soil mois-
ture retrievals from operational geodetic-grade receivers at 11
sites in the western U.S. As vegetation growth has been shown
to obscure and complicate the soil moisture signal [11], we
consider the performance of three retrieval algorithms that
represent the effects of vegetation with different degrees of
complexity.

The basic GPS-IR procedure is to estimate a geophysi-
cal variable (e.g., soil moisture) from the pattern of an SNR
interferogram. The general shape of the SNR interferogram
is determined by the antenna gain pattern, the height of the
reflecting surface relative to the antenna, as well as other fac-
tors including surface topography and roughness. A detailed
description of SNR formulation is outside the scope of this
paper. For more information, see [12] and [13]. Temporal varia-
tions in interferograms are caused by changes in the permittivity
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Fig. 1. (a) Example SNR data for wet and dry soil conditions. (b) Example SNR data for bare-soil and vegetated conditions (from site OKL2). (c) Lomb–Scargle
Periodogram for bare-soil and vegetated conditions, from analysis of the SNR data shown in panel B. Heff decreases by more than 0.1 m from the bare-soil to
vegetated case.

of the ground surface (e.g., soil moisture) as well as vege-
tation [Fig. 1(b) and (c)]. Due to the noise present in SNR
interferograms, the following equation is used to fit the data:

SNR = Acos

(
4πH0

λ
sinE + φ

)
(1)

where E is the elevation angle, λ is the GPS wavelength, and
H0 is the a priori reflector height (discussed below). Amplitude
A and phase φ are referred to here as SNR metrics. Larson et al.
[6], [12] showed that phase varied linearly with near-surface
soil moisture, using observations from a site in Colorado.
Zavorotny et al. [14] used a model of GPS reflections to demon-
strate the physical basis leading to this relationship. The model
was subsequently used by Chew et al. [15] to develop an algo-
rithm to estimate soil moisture for bare-soil conditions. Vey
et al. [10] used this algorithm to develop a multiyear soil mois-
ture time series from a site in South Africa. They found the
root-mean-square error (RMSE) between soil moisture esti-
mated via GPS-IR and measured in situ was 0.05 cm3 cm−3,
an error too large for some applications.

The phase of the SNR interferogram is also affected by veg-
etation. Chew et al. [11] showed that variations in phase due to
seasonal changes in vegetation are of the same magnitude as the
variations in phase due to soil moisture fluctuations [Fig. 1(a)].
Therefore, effects of vegetation on phase must be considered in
soil moisture estimation, at least at sites where seasonal veg-
etation changes are significant. It is possible to account for
vegetation effects in soil moisture retrieval algorithms by con-
sidering aspects of the SNR interferogram other than phase.
Amplitude decreases as vegetation grows [Fig. 1(b)] [16], [11].
The changes in amplitude resulting from vegetation growth are
approximately an order of magnitude larger than those from
soil moisture variations. In addition, amplitude varies nearly
linearly with vegetation water content (VWC), at least up to

∼1.0 kg m−2 [16], [11]. Therefore, it is possible to use ampli-
tude to estimate vegetation conditions at a site, and then adjust
phase and soil moisture accordingly.

Additional information about vegetation conditions can be
retrieved via frequency analysis of the SNR interferogram. The
dominant frequency of the SNR interferogram can be converted
to an effective reflector height, Heff

Heff =
1

2
fmλ (2)

where fm is the peak frequency found using a Lomb–Scargle
periodogram (LSP). Heff tends to decrease as vegetation grows
[Fig. 1(c)]—the dominant reflecting surface moves closer to the
antenna [11]. The amplitude of the peak frequency ALSP also
decreases [Fig. 1(c)]. This occurs because there are reflections
from throughout the vegetation canopy, rather than only from
the soil surface. The relationship between these two metrics
and vegetation is not as simple as for amplitude [11], particu-
larly when VWC exceeds 1 kg m−2. Chew et al. [17] described
a method to estimate vegetation effects on soil moisture esti-
mation by comparing observations of A, Heff , and ALSP

with model simulations. The additional complexity and data
requirements of this approach may not be warranted at many
sites.

The goal of this paper is to evaluate the accuracy of near-
surface soil moisture estimated from the GPS-IR technique,
using data collected with standard geodetic instrumentation.
Validation is based on comparisons to in situ observations of
soil moisture collected from within the GPS-IR sensing foot-
print. To date, validation of GPS-IR soil moisture estimates has
only been reported for two sites (e.g., [6], [10]). The results
presented here extend this validation to 11 sites, several in loca-
tions with substantial seasonal variations in vegetation cover.
Six of the validation sites were established as part of NSF’s
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Plate Boundary Observatory (PBO) network, which includes
over 1000 sites with standard geodetic instrumentation. The
remaining sites were installed specifically for development of
the GPS-IR technique, including evaluation of the impact of
vegetation on the retrieval algorithm. These sites have subse-
quently become part of the operational PBO H2O network, a
network of sites for which soil moisture, snow, and vegetation
status are estimated via GPS-IR on a daily basis [7]. Thus, the
analysis presented here provides the information necessary to
gauge the accuracy, and therefore potential applications of the
soil moisture data provided by PBO H2O.

Our validation of GPS-IR soil moisture using in situ data is
designed to compare the performance of three different retrieval
algorithms, each representing the effects of vegetation with a
different degree of complexity. Our intent is to identify the
simplest algorithm that can be used for different vegetation
conditions. This provides guidance for the development of oper-
ational soil moisture products in different environments. The
simplest algorithm was developed for bare-soil conditions [14],
and thus relies upon the assumption that the effects of vegeta-
tion are negligible. Chew et al. [14] and Vey et al. [10] used this
algorithm in their comparisons with in situ soil moisture obser-
vations. The second algorithm adjusts soil moisture estimates
for temporal fluctuations in vegetation cover. The vegetation
effects are determined from variations in the amplitude of the
SNR interferogram. The most complex approach relies upon
all three SNR metrics other than phase to quantify the effects of
vegetation on estimated soil moisture [17].

The plan of this paper is as follows. The field sites used for
validation and the data collection and analysis are described in
Section II. The three algorithms are described and compared in
Section III. GPS-IR soil moisture is compared to in situ obser-
vations in Section IV. Recommendations for use of the different
algorithms are provided in Section V.

II. FIELD SITES AND DATA

A. Field Sites

Data from 11 PBO H2O sites are used for validation. Eight
of these sites are in Colorado and New Mexico (Table I). These
eight sites were chosen primarily based on their location: we
were able to visit at least two sites per day on sampling trips
starting and ending in Boulder, CO, USA. These eight sites are
similar in several ways to the soil moisture sites throughout the
PBO H2O network. First, the climate is semiarid with annual
precipitation of ∼500mm. There is minimal or ephemeral
snowcover during the winter. Second, the vegetation at each site
is predominantly native grasses (Fig. 2). This is typical of the
relatively low elevation areas of semiarid western U.S., where
most PBO H2O soil moisture sites are located. The exception
is P123, which is located in a shrubland. The amount of veg-
etation varies seasonally at the validation sites. The highest
VWC measured at each site during the validation surveys is
∼0.5 kg m−2 (Table I). The maxima in VWC are likely higher,
as the survey dates do not necessarily correspond to peak vege-
tation growth. At peak growth, the vegetation height is typically

Fig. 2. (Left) Site photo from OKL3, located in Marena Oklahoma. (Right)
Site photo from P037, located in Fremont Colorado (Table I).

less than 50 cm. Third, surface topography around the antenna
is nearly planar, with surface slopes less than a few degrees.

The three remaining sites are located at an intensively mon-
itored research site in Oklahoma (Table I, Fig. 2). The three
GPS installations at this site are separated by ∼500m. The
Oklahoma sites were included in this analysis for two rea-
sons. First, annual precipitation is ∼1000mm, so the seasonal
peaks in vegetation are greater than for the Colorado and New
Mexico sites. Maximum VWC is 1.0− 1.5 kg m−2 and height
is ∼1m. Again, maximum VWC is likely higher than shown
in Table I, as VWC was only measured on the survey dates.
Second, extensive in situ validation data were collected as part
of a soil moisture sensor intercomparison effort. Although the
three Oklahoma sites are close to each other, at least compared
to the Colorado and New Mexico sites, they are not identical.
Differences exist in topography around the antenna. In addition,
the timing and amount of vegetation growth varies between
sites due to differences in grazing management.

B. GPS Instrumentation, Data Stream and SNR Metrics

All sites have identical geodetic-grade Trimble NetRS GPS
antennas and receivers. Choke-ring antennas are mounted ∼2m
above the ground surface, except at Oklahoma, where the
antenna is 2.7m. 1 Hz L2C SNR data were available and thus
used at all our validation sites, but this sample rate is not
required. Each rising (setting) satellite yields an SNR trace as
the reflection point moves toward (away from) the antenna (e.g.,
[12]). The number of available ground tracks has increased as
new GPS satellites have been launched. Not all of these tracks
are used. At each site, usable ground tracks are selected based
on the clarity of the reflected signal, as determined from visual
inspection of SNR interferograms and lower limits on ALSP .
The number of usable tracks varies between the sites (Table I).

The soil moisture retrieval algorithms use daily averages of
the SNR metrics across usable tracks at a site. SNR metrics are
calculated for each SNR interferogram individually using (1)
and (2). Then, the average value for each metric is calculated
using data from all usable ground tracks. Details of the SNR
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TABLE I
VALIDATION SITE INFORMATION

Mean annual precipitation (mm) is estimated from National Land Data Assimilation System (NLDAS) precipitation input field [24]
at the location of the sites. VWC was not measured at P037 or P038.
aN.D. indicates no data available.

metric calculations can be found in Chew et al. [17]. For each
track, A and ALSP are normalized so that the highest values
equal 1.0, in order to compensate for differences in power trans-
mission between satellites, yielding Anorm and ALSPnorm,
respectively. The standard deviation of SNR phase between the
tracks is used to calculate uncertainty.

C. Soil Moisture Validation Data

Validation of remotely sensed soil moisture is typically based
on a comparison to one of two types of in situ volumetric
soil moisture (VSM) data. First, VSM can be measured via
the thermo-gravimetric method: a metal ring of known volume
is inserted into the soil, the soil is weighed wet, then dried
and reweighed (e.g., [18]). This method is problematic at sites
where the soil contains appreciable gravel and coarser particles
[19]. The coarse fraction of the soil makes it difficult to cleanly
insert a gravimetric sampling ring, yielding voids along the
inside the ring and errors in the resulting measurement of VSM.
At more than half of the validation sites (and many PBO H2O
sites), the fraction of the soil volume that is gravel or larger is
high enough (typically ∼10%) so that the thermo-gravimetric
method does not yield reliable data.

The second approach to collect validation data is to use cali-
brated soil moisture probes, either deployed permanently (e.g.,
[6], [18], and [10]) or inserted into the soil for an instan-
taneous measurement (e.g., [20]). We used hand-held theta
probes (Theta ML2, Delta-T Devices, Cambridge, U.K.) for
collection of the in situ validation data, thus avoiding errors
associated with using the thermo-gravimetric method in coarse
soils. In cases when the narrow prongs of the theta probe
impacted coarse grains, the probe was simply reinserted nearby.
The theta probe has three 6-cm long prongs, providing a mea-
surement of VSM in the top 6 cm of the soil when inserted
perpendicular to the ground surface. At the Oklahoma sites,
an empirical theta probe calibration curve was established via
comparison to collocated therm-gravimetric samples. At the

Colorado and New Mexico sites, we used the factory calibration
curve to convert from voltage to VSM. The factory calibration
and the Oklahoma-specific curves provide VSM values that are
within 0.01 cm3 cm−3 across the measurement range.

Our goal is to evaluate GPS-IR soil moisture estimates at the
scale of the sensing footprint. The effective sampling area for
each ground track is an ellipse that is roughly 30 m long by sev-
eral m wide, radiating out from the antenna [12]. The sampling
area is ∼1000 m2 after the usable ground tracks at a site are
combined. For each validation site visit, we collected ∼30 theta
probe measurements randomly distributed within 30 m of the
antenna. No attempt was made to limit the sampling locations
to the azimuths with usable ground tracks.

Validation data were collected on a series of visits to each
site. The New Mexico and Colorado validation sites were vis-
ited between 5 and 7 times during 2013 and 2014 (Table I).
The timing of each visit was determined by the availability of
field technicians, although we did attempt to collect data from
both dry and wet conditions. The Oklahoma sites were visited
approximately 15 times during 2011 and 2012. Site MFLE near
Boulder, CO, USA, was visited 10 times during 2014. All site
visits did not yield data that could be compared with GPS-IR
estimates. There were GPS data gaps at the time of multiple
site visits, including several visits for P123 and P038 (Table I).

The theta probe VSM data from a single validation visit was
averaged and compared to the daily GPS-IR estimate from the
corresponding day (UTC). Depending on the exact time of day
of field sampling, the validation data were collected at a differ-
ent time than data from some of the individual satellite tracks,
by up to 18 h in the most extreme cases. On most days, this
would introduce only small errors in the validation compari-
son, as near-surface VSM only changes by ∼0.02 cm3 cm−3

per day (e.g., [21]). However, larger errors can occur on days
with precipitation, particularly when the in situ sampling was
completed prior to the rainfall event but some of the SNR data
were collected afterward. Therefore, we excluded validation
data collected on days when rainfall exceeded 5 mm. A similar
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exclusion of data from rainy days has been applied in validation
studies of satellite-based soil moisture (e.g., [18]).

III. ALGORITHMS FOR ESTIMATING SOIL MOISTURE

FROM SNR DATA

In this section, we describe the three soil moisture algo-
rithms, from simplest to most complex. We do not try to provide
a complete description of the first and third algorithms, as
detailed information is provided by Chew et al. [15], [17]. The
second algorithm has not been described in a prior publication.

A. Bare Soil Algorithm

The bare-soil algorithm was described by Chew et al. [15],
and used in the validation study of Vey et al. [10]. A for-
ward model of GPS reflections [14] was used to predict how
phase varies with soil moisture for bare-soil conditions. Central
to this model is the relationship between permittivity and soil
moisture [22], as it is the permittivity contrast at the air–soil
interface that causes the modeled phase shift. Model results
showed that phase varies nearly linearly with soil moisture. The
slope S of the relationship between phase and VSM is 1.48
(cm3 cm−3 deg−1). Although soil texture changes the relation-
ship between permittivity and VSM (e.g., [22]), the magnitude
of the slope varies by only 1% between different soil textures.
Phase only provides information about relative soil moisture
variations. Therefore, variations in phase must be referenced
to a known soil moisture value. First, residual VSM V SMr is
determined from mapped soil texture, e.g, using the STATSGO
dataset [23]. Second, the median of the lowest 10% of phase
values (φr) is selected to equal residual soil moisture. The low-
est phase value is not used because a single outlier would affect
all other estimates of VSM. Then, VSM is calculated using the
observed phase and value for S

VSM(t) = S (φ (t)− φr) + VSMr. (3)

The bare-soil algorithm may not provide accurate estimates
of soil moisture in many environments because it is based on
several simplifying assumptions. First, the value for S was
based on simulations using a uniform soil moisture profile,
even though vertical soil moisture variations do affect the rela-
tionship between phase and soil moisture [15]. Second, the
ground surface is assumed to be flat. Third, the ground surface
is assumed to be free from vegetation, which is not a reason-
able assumption at many GPS sites. Vey et al. [10] reported a
RMSE of 0.05 cm3 cm−3 between GPS-IR and in situ observa-
tions at a semiarid site in South Africa. Although the site had
limited vegetation (see Fig. 1 [10]), some portion of this error
may be due to effects of the vegetation canopy on soil moisture
retrieval.

B. Veg-Simple: Amplitude-Based Adjustment For Vegetation
Effects

We refer to the second algorithm as the “veg-simple” algo-
rithm. Like the bare-soil algorithm, the veg-simple algorithm is

TABLE II
PARAMETER VALUES OF (4) AND (5)

Veg-simple parameter values are used in (4) and (5).

also based on (3), but phase is first adjusted for the effects of
vegetation prior to estimation of soil moisture. This adjustment
includes four steps. First, the normalized, site-averaged ampli-
tude (Anorm) time series is smoothed using a low pass filter.
Filtering is necessary to remove the high frequency variations
(timescales of days to weeks) in Anorm that result from soil
moisture fluctuations. Modeling studies have shown that soil
moisture-induced variations in amplitude are small compared
to those from vegetation alone, but they are not negligible [11],
[15]. In reality, the scattering from the soil surface cannot be
fully decoupled from the scattering of the combined soil and
vegetation canopy, though the results here will show that the
low pass filter is sufficient for soil moisture retrieval.

Second, the smoothed amplitude time series is used to
estimate VWC

VWC(t) = a1A
4
norm + a2A

3
norm + a3A

2
norm

+ a4Anorm + a5. (4)

Third, the estimated VWC is used to predict the phase shift
(Δφ) resulting from the vegetation canopy

Δφveg(t)= a1VWC4 + a2VWC3 + a3VWC2 + a4VWC+ a5.
(5)

Equations (4) and (5) are based on model simulations of GPS
reflections through a uniform vegetation canopy [11]. Although
canopy heterogeneities would affect the propagation of GPS
signals, the simple uniform canopy was shown to be sufficient
to quantify canopy effects on the SNR interferogram [11]. Each
equation is the best-fit fourth-order polynomial that relates the
SNR metric (Anorm or φveg) to VWC. A fourth-order poly-
nomial was chosen because it provides a good fit at both low-
(<0.3 kg m−2) and high-VWC (>1 kg m−2). The polynomial
coefficients are listed in Table II. The vegetation parameters
used in the simulations (e.g., canopy height) were constrained
by field measurements at five sites [16], [11]. Different parame-
ters would yield different coefficients in (4) and (5). Collocated
SNR and vegetation data were used to quantify the uncer-
tainty in the polynomial relationships. Equations (4) and (5)
are accurate to within 20%, for canopies with VWC less than
1.5 kg m−2. Although there is uncertainty in the predicted value
of Δφveg , this approach does account for the first-order effects
of vegetation on SNR phase. Fourth, phase is adjusted for the
predicted effects of vegetation

φ′ (t) = φ(t)−Δφveg(t). (6)

The adjusted phase values φ′ (t) are then used to estimate soil
moisture using (3), with S = 1.48. Zeroing is required to link
variations in phase to absolute soil moisture. The median of the
bottom 10% of adjusted phase values (φ′) is linked to residual
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Fig. 3. Top: Smoothed normalized amplitude from site P070. Middle: VSM in cm3 cm−3 time series from site P070 using the bare-soil and veg-simple algorithms.
The difference between them (bare-soil minus veg-simple) is shown by the red line. Bottom: Daily precipitation in mm from NLDAS for the grid cell containing
site P070.

Fig. 4. Scatter plots of VSM determined using the bare-soil algorithm (x-axis) versus VSM adjusted for vegetation (y-axis): green points show VSM from the
veg-simple algorithm and black points show VSM from the veg-complex algorithm. The one-to-one line is shown in red. Three sites are shown (P039, P036, and
OKL3) in order of increasing vegetation amount.

soil moisture. If the measured phase values were used, as in
the bare-soil algorithm, VSM would reach the residual value at
the time of peak vegetation growth, instead of when the soil is
driest.

For typical values of Anorm, (4)–(6) yield soil moisture esti-
mates that differ considerably from those calculated using the
bare-soil algorithm. For example, if Anorm is 0.85, (4) yields
VWC of 0.33 kg m−2 and (5) yields Δφveg of −5.2◦, equiva-
lent to a change in VSM of 0.076 cm3 cm−3. This difference
is significant when compared to the full range of possible
soil moisture values (∼0.4 cm3 cm−3) and the target accuracy
for satellite validation (0.04 cm3 cm−3). The vegetation adjust-
ment compresses the range of phase values input to (3) because
Δφveg is nearly always negative. Δφveg is negative because

the permittivity and canopy height changes caused by vegeta-
tion growth move the effective reflector closer to the antenna.
This results in a negative shift when phase is estimated from the
SNR interferogram.

There are thus two differences in VSM between the bare-soil
and veg-simple algorithms. First, the range of VSM using the
veg-simple algorithm is less (Figs. 3 and 4). Second, the aver-
age VSM from the veg-simple algorithm is lower, given that
the minimum in both cases is set to residual soil moisture. The
average difference at the validation sites is ∼0.05 cm3 cm−3.

The magnitude of the difference varies throughout the year,
from ∼0 to 0.1 VSM (Fig. 3). Differences in VSM are great-
est at the time of year when amplitude is closest to 1.0, when
vegetation is at its seasonal minimum. VSM differences are
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smallest at the time of year when amplitude is lowest, typi-
cally in late spring or early summer, when vegetation reaches
it maximum extent. This is counterintuitive because the vegeta-
tion correction is greatest when amplitude is lowest. However,
phase minima typically occur in mid-summer, which is when
both time series are referenced to residual moisture content.

C. Veg-Complex: Multimetric Adjustment for Vegetation
Effects

The third algorithm (veg-complex) is described in Chew
et al. [17], so only a brief explanation is provided here. As
for the veg-simple algorithm, the effects of vegetation on the
SNR interferogram are based on the model of GPS reflections
through a uniform vegetation canopy [11]. The veg-complex
algorithm was developed for two reasons: 1) when VWC
exceeds 1 kg m−2, amplitude alone is not a good predictor of
the phase shift caused by the vegetation canopy; and 2) the
veg-simple algorithm is based on a single relationship between
VWC, canopy height and other vegetation parameters. In real-
ity, many possible combinations of these vegetation parameters
exist.

The veg-complex algorithm uses a lookup table that was
constructed using an ensemble of 16 000 model simulations,
in which vegetation parameters were varied over the range
expected at PBO H2O sites: VWC less than 3 kg m−2, canopy
height less than 1 m, and vegetation gravimetric moisture
between 20 and 90 percent. The lookup table, unlike the veg-
simple algorithm, consists of the modeled effect of vegetation
on all SNR metrics (Δφveg , Anorm, ALSPnorm, and ΔHeff ).
The observed SNR metrics are smoothed using a low-pass fil-
ter, and then the lookup table is used to identify the model
simulation that most closely replicates the three observed SNR
metrics. The Δφveg from that model simulation is used in (6).
For any observed Anorm, there is a range of possible Δφveg,
which is then constrained by the values of the other two metrics
(ALSPnorm and ΔHeff ) (Fig. 5). This range exists because
different types of vegetation canopies (e.g., short, dense vegeta-
tion versus tall, sparse vegetation) affect the SNR interferogram
in different ways. In contrast, the veg-simple algorithm yields
a single value of Δφveg for each value of Anorm. Including
ALSPnorm along with Anorm provides additional information
about Δφveg because these two amplitude metrics do not sim-
ply covary (Fig. 5). For example, ALSPnorm varies from nearly
1.0 to less than 0.7 for Anorm = 0.75.

There is a second important difference between the veg-
complex and veg-simple algorithms. The veg-complex algo-
rithm accounts for changes in S that occur due to the vegetation
canopy. Each simulation that was used to create the lookup table
was repeated varying the soil moisture beneath the vegetation
canopy, yielding a value of S for each combination of vege-
tation parameters in the ensemble. Once the model simulation
that best matches Anorm, ALSPnorm, and Heff is identified,
S for these vegetation conditions is used in (3). The magni-
tude of S is close to 1.48 when VWC is <1.0 kg m−2 and
canopy heights are less than ∼20 cm, but decreases significantly
for both taller canopies with those with greater water contents,
perhaps due to the fact that at this point the path through the
canopy is on the order of one wavelength.

Fig. 5. Black line shows Δφveg from the veg-simple algorithm, which is
calculated only from Anorm. The veg-simple algorithm was not originally
designed for sites where Anorm drops below ∼0.8. Δφveg from the veg-
complex algorithm is shown by the points, color-coded based on ALSPnorm.
Variations in effective reflector height are also considered in the veg-complex
algorithm (not shown).

As in the first two algorithms, the veg-complex algorithm
requires that the phase time series is zeroed for calculation of
absolute soil moisture. First, the median of the bottom 10%
of observed phase values is set to zero for comparison to the
lookup table. Then, the lookup table is used to estimate Δφveg

and S for each day, yielding the adjusted phase time series,
φ′ (t). The final VSM time series is then adjusted so that the
lowest retrieved soil moisture values correspond to residual soil
moisture.

The range of soil moisture is smaller, and the average VSM
is lower when the veg-complex algorithm is used, compared
to the unadjusted (bare soil) soil moisture time series (Figs. 4
and 6). Thus, the veg-complex algorithm has the same gen-
eral effect on the soil moisture time series as the veg-simple
algorithm. At all sites, soil moisture from the veg-complex
algorithm is lower than for the veg-simple algorithm. This is
due to a combination of both the Δφveg and lower S calcu-
lated in the veg-complex case. This difference is greatest at the
Oklahoma sites, where seasonal peaks in VWC are 1 kg m−2 or
higher, and the amplitude-only adjustment cannot fully account
for the effects of vegetation on the SNR interferogram. The
differences between the adjustment from the veg-simple and
veg-complex algorithms are discussed more completely below.

IV. RESULTS

We now compare GPS-IR soil moisture estimates to the in
situ validation data. For this comparison, we split the sites into
two groups. First, we evaluate performance of the GPS-IR soil
moisture at the eight sites in Colorado and New Mexico. The
peak VWC is lower than 1 kg m−2 at these sites (Table I),
so the veg-simple algorithm is anticipated to be sufficient to
adequately represent the effects of the vegetation canopy. At
these sites, the operational PBO H2O soil moisture data are
produced using this algorithm. Performance is compared to the
bare-soil algorithm, to quantify the importance of accounting
for vegetation effects. Second, we evaluate the performance
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Fig. 6. Top: Smoothed normalized amplitude for site OKL4. Middle: VSM in cm3 cm−3 for site OKL4 using all three algorithms. Bottom: Daily precipitation in
mm from NLDAS for the grid cell containing site OKL4.

of the three soil moisture algorithms at the Oklahoma sites.
We also include data from P036 (in New Mexico) in the
comparison, as it is the only non-Oklahoma site where VWC
approaches 1 kg m−2.

A. Evaluation of Bare-Soil and Veg-Simple VSM at Sparsely
Vegetated Sites

We first evaluate the performance of the seven Colorado and
New Mexico sites grouped together, and subsequently examine
results from individual sites. The veg-simple algorithm pro-
vides an accurate measure of 0–6 cm soil moisture (Fig. 7 and
Table III). The RMSE between the veg-simple and in situ VSM
is 0.038 cm3 cm−3, below the 0.04 cm3 cm−3 limit required for
validation of satellite soil moisture data [20]. There is no bias
(Table III), partly due to errors from several sites which tend to
cancel one another out: veg-simple VSM tends to be higher than
in situ at P036 and lower than in situ at MFLE. These site-level
errors result in scatter around the 1:1 line (r2 = 0.83). A linear
regression between veg-simple and in situ VSM does not indi-
cate that the veg-simple algorithm results in systematic errors:
the slope of the best fit line is 1.02± 0.15 with an intercept of
0.01± 0.02.

The bare-soil algorithm does not perform as well (Fig. 7 and
Table III). RMSE between the base soil and in situ VSM is
0.055 cm3 cm−3, above the 0.04 cm3 cm−3 limit. This is nearly
identical to the RMSE reported by Vey et al. [10] also using the
bare-soil algorithm. There is a positive bias of 0.04 cm3 cm−3.
Even when this bias is removed, the bare-soil performance is

inferior to that from veg-simple: r2 is slightly lower (r2 = 0.78)
and the unbiased RMSE is 0.042 cm3 cm−3. The differences
in performance between the veg-simple and bare-soil algo-
rithms are consistent with the vegetation adjustment described
in Section III-B. When the bare-soil algorithm is used, the entire
range of observed phase variations is attributed to soil moisture
variations. The result is that the range of soil moisture is too
high. Once the phase time series is zeroed and linked to residual
soil moisture, the average soil moisture is also too high. This is
consistent with the positive bias found via comparison to the in
situ data. This problem is apparent even without comparison to
validation data. Bare-soil VSM exceeds the expected saturated
water content during some intervals of the year at many sites.
This problem cannot be remedied by simply removing a con-
stant bias of 0.03 cm3 cm−3 (or similar) because the magnitude
of the vegetation effects varies seasonally.

Examination of performance on a site-by-site basis is imper-
fect because most of the sites have six or fewer validation
surveys. Even with the limited data, several results are appar-
ent. First, bare-soil VSM is higher than in situ VSM at six of
the seven sites (MFLE is the exception). This positive bias is
largely removed, or at least significantly reduced (P036), by
using the vegetation adjustment in the simple-veg algorithm.
This result is consistent with the differences between the two
algorithms. Second, the r2 value between GPS-IR and in situ
VSM is very high: 0.94 or greater at all sites for which there
are five or more surveys (Table III). The r2 value is nearly
identical for VSM estimated using the bare-soil and veg-simple
algorithms. This shows that the relationship between GPS-IR



SMALL et al.: VALIDATION OF GPS-IR SOIL MOISTURE RETRIEVALS 4767

Fig. 7. Scatter plots of GPS-IR versus in situ VSM (both in cm3 cm−3), using the bare-soil algorithm (left) and the veg-simple algorithm (right). The black
dashed line is the one-to-one line. Colors indicate site. Horizontal error bars represent one standard deviation for each in situ VSM survey. Vertical error bars
represent one standard deviation of GPS-IR VSM on the survey date, calculated using phase from individual ground tracks and converted to VSM using S (3).

TABLE III
VEG-SIMPLE AND BARE-SOIL STATISTICS: SITES WITH VEGETATION <1 KG M−2

Bold in root-mean-standard error (RMSE) column indicates values are below the 0.04 cm3 cm−3 standard described
in Jackson et al. [20]. “Slope” is the slope of the best-fit line between the in situ and GPS-IR VSM. Blank cells
indicate insufficient data for calculation of site-specific statistics (fewer than 5 validation surveys).

phase and VSM is effectively linear, confirming prior empiri-
cal and modeling results [8], [15]. Third, the slope values from
linear regression between GPS-IR and in situ data (Table III)
are close to 1.0, more so from the veg-simple algorithm. This
shows that the slope (S) used in (3) provides a reasonable
approximation for the scaling between phase and soil mois-
ture variations, especially when the veg-simple adjustment is
applied. The exception is at P036, where the slope via regres-
sion is nearly 1.5 for veg-simple and even higher when using
the bare-soil algorithm. Of the eight Colorado and New Mexico
sites, P036 has the greatest seasonal fluctuations in vegeta-
tion. Even though the veg-simple algorithm improves upon the
bare-soil results, it may not be sufficient to fully represent veg-
etation effects, at least with the parameter values currently used
(Table II). This is evaluated in Section IV-B.

B. Evaluation of Veg-Complex and Veg-Simple Algorithms at
Moderately Vegetated Sites

We now compare GPS-IR and in situ VSM at the four
sites with the greatest seasonal fluctuations in vegetation: the
three Oklahoma sites and P036. We compare performance of
the veg-simple and veg-complex algorithms. Results from the

bare-soil algorithm are not considered, as we showed above this
approach is not adequate at the sites with even less vegetation.

The RMSE between veg-complex and in situ VSM is
0.039 cm3 cm−3 when all four high vegetation sites are
grouped together, and 0.04 cm3 cm−3 for the group of three
Oklahoma sites (Fig. 8, Table IV). P036 was the only site
outside of Oklahoma where the veg-simple algorithm did not
achieve the 0.04 cm3 cm−3 standard (Table III, Section IV-
A). Performance at P036 is greatly improved when the veg-
complex algorithm is used. For the individual Oklahoma sites,
veg-complex is below 0.04 cm3 cm−3, except at OKL4.

In comparison, performance of the veg-simple algorithm is
not nearly as good at the four sites with significant vegetation
variations: RMSE is approximately 0.10 cm3 cm−3, for indi-
vidual sites or when the sites are grouped together. The failure
of the veg-simple algorithm is the product of two factors. First,
the veg-simple VSM has a positive bias of ∼0.10 cm3 cm−3.
Second, even if the positive bias is removed, the performance of
the veg-simple algorithm is not sufficient. The unbiased RMSE
is still considerably higher than 0.04 cm3 cm−3. The veg simple
algorithm does not represent all the variations in VSM shown
by the data (Fig. 8): r2 is only 0.5, compared to 0.8 when the
veg-complex algorithm is used.
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Fig. 8. Scatter plots of GPS-IR versus in situ VSM (both in cm3 cm−3) using the veg-simple algorithm (left) and the veg-complex algorithm (right). The black
dashed line is the one-to-one line. Colors indicate site. Horizontal error bars represent one standard deviation for each in situ VSM survey. Vertical error bars
represent one standard deviation of GPS-IR VSM on the survey date, calculated using phase from individual ground tracks and converted to VSM using S (3).

TABLE IV
VEG-COMPLEX AND VEG-SIMPLE STATISTICS: SITES WITH VEGETATION OF ∼1 kg m −2

Bold in root-mean-standard error (RMSE) column indicates values are below the 0.04 cm3 cm−3 standard described in
Jackson et al. [20]. “Slope” is the slope of the best-fit line between the in situ and GPS-IR VSM.

The results shown in Fig. 8 indicate that the veg-simple algo-
rithm does not adequately account for vegetation effects at the
four sites with the greatest variations in vegetation amount.
When the veg-simple algorithm is used, some of the phase vari-
ations from vegetation are attributed to changes in soil moisture.
As a result, the estimated soil moisture is too high once the
time series is zeroed. The two outliers from OKL4 are extreme
examples of this problem (Fig. 8). These two data points are
from summer of 2012 when normalized amplitude was the low-
est for all validation points. The veg-simple VSM is too low
because the phase adjustment for vegetation (6) was not large
enough. Below, we discuss if different parameters in (4) and
(5) could be used to increase the sensitivity of the veg-simple
algorithm.

V. DISCUSSION

We now use the results described above to develop rec-
ommendations for selecting which of the three soil moisture
algorithms should be used, given conditions at a site and
objectives of the monitoring.

The bare-soil algorithm described by Chew et al. [15],
and tested by Chew et al. [15] and Vey et al. [10], pro-
vides estimates of VSM that may be acceptable for some
applications. However, the effects of vegetation on phase are
ignored. As a result, the bare-soil VSM time series have a

larger range than collocated in situ measurements, and a pos-
itive bias once the phase time series are linked to residual
soil moisture. Even if the bias was removed, significant errors
remain due to seasonal fluctuations in vegetation and its effect
on phase. Even the unbiased errors exceed the limit set for
satellite validation [20]. The Colorado and New Mexico vali-
dation sites used here are not heavily vegetated. At these sites,
the vegetation is typical for temperate climates with ∼300−
600mm y−1 of precipitation. Even with this limited vegeta-
tion, the effects on phase are considerable and the bare-soil
algorithm is not optimal. The bare-soil algorithm may be suf-
ficient for arid sites or other locations free of vegetation (e.g.,
[10]), but data from these types of sites were not considered
here.

The veg-simple algorithm provides acceptable perfor-
mance at typical sites in the PBO H2O network (RMSE <
0.04 cm3 cm−3). The vegetation adjustment algorithm is sim-
ple to implement, requiring only that a smoothed time series
of SNR amplitude is used in conjunction with phase. The veg-
simple algorithm can also be used at bare-soil sites and sites
with very limited vegetation. At these sites, the phase adjust-
ment will be minimal (or zero), and the soil moisture time series
from the veg-simple and bare-soil algorithms will be identical.
Therefore, we recommend use of the veg-simple algorithm at
sites where VWC fluctuates by less than 1 kg m−2. This limit
should be considered an approximate guideline.
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The parameter values used in the veg-simple algorithm
(Table II) are based on model simulations, designed to repli-
cate collocated GPS and vegetation data from only five sites
[11]. The parameter values used here are likely not optimal
for all PBO H2O sites, or sites in other networks. Using these
values, the phase adjustment from the veg-simple algorithm
is similar to that from the veg-complex algorithm for nor-
malized amplitudes between 0.85 and 1.0 (Fig. 5). However,
the phase adjustment calculated in the veg-simple algorithm is
considerably less for amplitudes below 0.85. Different param-
eters values could improve the agreement between the phase
adjustment from the veg-simple and veg-complex algorithms
for amplitudes <0.85. This would improve performance of the
veg-simple algorithm at sites where VWC is close 1 kg m−2,
e.g., P036. This could also extend the range of the veg-simple
algorithm to environments with VWC greater than 1 kg m−2,
where the veg-simple algorithm yields VSM values that are too
high. Even if this bias is removed, the veg-simple algorithm
cannot represent the range of Δφveg that exists at any normal-
ized amplitude value, resulting from differences in geometry,
height, and water content of the vegetation canopy. The other
metrics (ALSPnorm and ΔHeff ) are needed to more accurately
estimate Δφveg. In addition, the veg-simple algorithm does not
allow for changes in S caused by the vegetation canopy.

The veg-complex algorithm yields the best performance at
sites where fluctuations in VWC are ∼1 kg m−2. This algo-
rithm also performs well at sites with less vegetation, yielding
error statistics very similar to those from the veg-simple algo-
rithms. Use of the veg-complex algorithm is warranted at sites
where fluctuations in VWC are ∼1 kg m−2 or greater. However,
preliminary data from agricultural sites with VWC greater than
4 kg m−2 indicate that the lookup table may not be sufficient
for these environments. Therefore, while the veg-complex algo-
rithm does extend the sensing capability of GPS-IR, it still may
not be possible to estimate soil moisture via GPS-IR at sites
with the greatest fluctuations in VWC. Given the additional
SNR metrics and data processing required by the veg-complex
algorithm, we recommend that the veg-simple algorithm should
be considered the default to use at all sites, since in many cases
the two algorithms perform equally well. If, after implement-
ing the veg-simple algorithm, there is still a seasonal vegetation
effect observable in the data or if Anorm drops below ∼0.75,
then the veg-complex algorithm could be implemented.

Finally, we note that adjusting for vegetation effects is not the
only challenge faced when estimating soil moisture via GPS-
IR. There are multiyear trends or shifts in SNR metrics that are
unrelated to vegetation. If not accounted for, these changes will
impact the VSM time series, regardless of the vegetation algo-
rithm used. Although rare, we have found instances where a
satellite was maneuvered by the U.S. Department of Defense
(DoD) in a way that introduced a small bias in phase. This
change was irrelevant for sites with little terrain variation, as
is the case for almost all PBO H2O sites. Since we can easily
determine when the satellites are maneuvered, this effect can
be removed. The addition of new satellites (and their associated
ground tracks) through time can cause shifts in all SNR met-
rics. In our experience, the first thirty days of data for any new
GPS satellite should be discarded for GPS-IR, as this is when

the DoD is most likely to be implementing small changes in its
orbit. One approach to mitigate the errors resulting from these
changes is to zero the VSM time series annually, rather than just
once for an entire time series.

VI. CONCLUSION

1. The bare-soil algorithm yields VSM time series with
errors that exceed 0.04 cm3 cm−3, even at sites where
VWC varies by only 0.5 kg m−2 throughout the year.
Even vegetation fluctuations of this magnitude affect
the phase time series enough to yield considerable soil
moisture errors.

2. The veg-simple algorithm provides improved perfor-
mance (RMSE < 0.04 cm3 cm−3) at sites where VWC
varies by less than ∼1.0 kg m−2, typical of sites in the
PBO H2O network. The vegetation adjustment is based
only on a smoothed time series of SNR amplitude, and
thus is simple to implement across an operational net-
work.

3. The veg-complex algorithm extends the range of GPS-
IR soil moisture sensing to sites with greater variations
in VWC. This algorithm should be used at sites where
the veg-simple algorithm fails to provide reasonable soil
moisture time series.
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