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Abstract. Drydown periods that follow precipitation events
provide an opportunity to assess controls on soil evaporation
on a continental scale. We use SMAP (Soil Moisture Active
Passive) observations and Noah simulations from drydown
periods to quantify the role of soil moisture, potential evapo-
ration, vegetation cover, and soil texture on soil drying rates.
Rates are determined using finite differences over intervals
of 1 to 3 days. In the Noah model, the drying rates are a good
approximation of direct soil evaporation rates, and our work
suggests that SMAP-observed drying is also predominantly
affected by direct soil evaporation. Data cover the domain of
the North American Land Data Assimilation System Phase 2
and span the first 1.8 years of SMAP’s operation.

Drying of surface soil moisture observed by SMAP is
faster than that simulated by Noah. SMAP drying is fastest
when surface soil moisture levels are high, potential evapo-
ration is high, and when vegetation cover is low. Soil texture
plays a minor role in SMAP drying rates. Noah simulations
show similar responses to soil moisture and potential evap-
oration, but vegetation has a minimal effect and soil texture
has a much larger effect compared to SMAP. When drying
rates are normalized by potential evaporation, SMAP obser-
vations and Noah simulations both show that increases in
vegetation cover lead to decreases in evaporative efficiency
from the surface soil. However, the magnitude of this ef-
fect simulated by Noah is much weaker than that determined
from SMAP observations.

1 Introduction

Though the volume of water is small, surface soil moisture
generates outsized effects on the global water and energy
balance (McColl et al., 2017b). Climate, weather, and flood
predictions depend on soil moisture (Entekhabi et al., 1996;
Viterbo and Betts, 1999). Feedback between the land and at-
mosphere can perpetuate soil moisture anomalies differently
depending on the climatic regime (Koster et al., 2004; Tuttle
and Salvucci, 2016). The duration of soil moisture anoma-
lies depends on the drying rate of soil, which is controlled by
complex interactions between soil hydrologic processes, at-
mospheric conditions, and vegetation state (e.g., Rodriguez-
Iturbe, 2000). Therefore, documenting the controls on soil
drying is necessary to more fully understand the role of ter-
restrial hydrologic processes and land–atmosphere interac-
tions in the climate system. In this study, we use satellite data
from NASA’s SMAP (Soil Moisture Active Passive) mission
and ancillary datasets to investigate such processes, specifi-
cally direct soil evaporation.

Soil moisture loss mechanisms include runoff, drainage,
and evapotranspiration (ET). The relative dominance of each
depends on how much time has passed since rainfall (Laio
et al., 2001). Runoff, when present, ceases only minutes af-
ter rainfall. Drainage occurs on a timescale of hours. Thus
both can be ignored when considering drying intervals on a
timescale of days, as is documented by the 1–3-day SMAP
soil moisture observations (Chan et al., 2016). Assuming
drainage is negligible outside of rainy intervals is a common
assumption in models of soil moisture dynamics (Federer et
al., 2003; Guswa et al., 2002; e.g., Laio et al., 2001; McColl
et al., 2017a; Porporato et al., 2004).
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At the continental scales observed by SMAP, these as-
sumptions result in a loss function dominated by stage two
(water-limited) ET (McColl et al., 2017a). Water-limited ET
is itself the sum of two fluxes: (1) direct evaporation from the
soil surface, which typically occurs over a depth of several
centimeters and (2) transpiration via plant stomata, which re-
moves water from throughout the root zone (Campbell and
Norman, 1998; Monteith and Unsworth, 2013). Given the
shallow sensing depth of L-band radiometers (Njoku and En-
tekhabi, 1996), we expect SMAP to capture mainly the for-
mer. Accordingly, our study is framed around assessing the
controls on direct evaporation on the continental scale. We
include surface soil moisture, potential evaporation (PE) rate,
vegetation, and soil texture in our assessment, as these quan-
tities are all expected to control direct soil evaporation rates.

Surface moisture (volumetric soil moisture, VSM) supply
is known to affect evaporation rates. In the Noah land sur-
face model (LSM) and other models, moisture stress scales
evaporation rates according to a piecewise function. Above
field capacity, evaporation proceeds at its potential rate (stage
one evaporation); below a residual soil moisture content, no
evaporation occurs; between the two thresholds, evaporation
depends on relative moisture content (Allen, 2000; Chen and
Dudhia, 2001).

Atmospheric moisture demand is quantified by the PE rate
and is also known to affect evaporation rates. Surface vapor
pressure, atmospheric vapor pressure, radiation, albedo, and
wind velocity contribute to its calculation (Mahrt and Ek,
1984; Penman, 1948).

Any vegetation present on the land surface introduces two
counteracting effects on soil drying that do not exist for bare
soil surfaces. Direct evaporation decreases because of shad-
ing from the canopy that intercepts solar radiation (Mahfouf
and Noilhan, 1991). Transpiration draws moisture from the
root zone into the atmosphere, with the depth of this flux de-
pending on root distribution (Schenk and Jackson, 2002).

The soil texture of the land surface, and thus its hydraulic
properties, also influences soil drying. Compared with fine-
textured soils (clay), coarser soils (sand) have more well-
connected pores, allowing water to leave the system more
easily at a given moisture level (Campbell, 1974; Clapp and
Hornberger, 1978; Cosby et al., 1984; Van Genuchten, 1980).
These differences cause volumetric soil moisture to be lower
for coarse textures than for fine (Laio et al., 2001). De-
spite the efforts that have gone into quantifying and mod-
eling the effects of textural differences on soil moisture and
heat fluxes, there remains much variability within each tex-
ture class, so assigning model parameter values based on
continental-scale soil maps has proven to be problematic
(Gutmann and Small, 2005; Xia et al., 2015b). Nevertheless,
the Noah LSM and other models use soil texture to assign soil
hydraulic properties, which dictate the infiltration and redis-
tribution of moisture in the soil column (Chen and Dudhia,
2001).

Studying evaporation and its contribution to total ET is
necessary to more completely understand and model the flux
of water from the land surface to the atmosphere (Kool et
al., 2014). However, continental-scale evaporation from soil
is notoriously difficult to measure directly. Lysimeters and
chamber measurements provide information over extremely
small areas (∼ 10 m2 or less) (e.g., Herbst et al., 1996; Stan-
nard and Weltz, 2006). Soil drying rates determined from
satellite-based observations can provide an estimate of sur-
face evaporation rates on a large scale (McColl et al., 2017a).
This requires that the depth supplying evaporation is sampled
by the sensor and that vertical redistribution within the soil
is negligible. Evaporation largely draws from the top several
centimeters of the soil column, within the sensing depth of
L-band radiometers (Njoku and Entekhabi, 1996), although
under extreme dry conditions the evaporative front will prop-
agate down to greater depths. In addition, L-band sensing
depth varies slightly with moisture content (Njoku and Kong,
1977), though quantifying the effect of this change is beyond
the scope of this study.

In situ observations have allowed for investigation into
how different environmental factors control soil drying rates
and thus evaporation rates (Cavanaugh et al., 2011; Detto et
al., 2006; e.g., Kurc and Small, 2004, 2007). Only recently
has satellite remote sensing of soil moisture advanced suf-
ficiently to make it possible to monitor drying rates on a
large scale (Entekhabi et al., 2010; Kerr, 2006), thus allow-
ing scientists to evaluate the physical controls on soil drying
across a wider range of conditions. McColl et al. (2017a)
studied global soil drying dynamics by fitting SMAP sur-
face soil moisture observations to an exponential decay func-
tion. They found shorter drying timescales in areas that have
higher aridity indexes and higher soil sand content, although
the effects of soil texture were relatively minor. Their results
confirm the expected roles of atmospheric demand and soil
texture on soil drying, and thus presumably also on direct
evaporation. They noted, however, that there was substantial
unexplained variance in drying timescales, citing vegetation
as a likely factor. In addition, McColl et al. (2017a) only con-
sidered static descriptors of the physical environment at each
location: neither aridity index nor soil texture vary through
time. Yet, the soil drying process represents a dynamic inter-
play between hydrologic, climatic, and ecosystem processes
(Rodriguez-Iturbe, 2000).

Here, we do not fit an exponential decay model to drydown
events as in McColl et al. (2017a). Instead we use calcula-
tions of changes in surface soil moisture through time, which
Shellito et al. (2016b) showed to provide a similar depiction
of soil drying as the exponential approach. Importantly, by
analyzing simple soil drying rates we avoid introducing new
uncertainties into our analysis associated with fitting an ex-
ponential decay model.

Our study builds upon McColl et al. (2017a) in two ways.
First, we examine the effects of dynamic controls on soil dry-
ing, rather than static covariates. Soil moisture supply, PE
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rate, and vegetation cover are observed or calculated coin-
cident with both the time and location of the SMAP drying
observations. This approach allows us to obtain results in-
dicative of time-varying hydrological mechanisms and pro-
cesses, rather than of the overall climate (e.g., aridity index)
or soil type in each location.

Second, we compare our results to output from the Noah
LSM (Ek et al., 2003; Xia et al., 2012a). Noah develop-
ment and validation have been more focused on reproducing
heat fluxes and runoff than soil moisture (Chen and Dudhia,
2001; Xia et al., 2012a, b). A comparison between Noah and
the North American Soil Moisture Database shows it is able
to capture broad features of soil moisture variations (Xia et
al., 2015a). Accurately simulating specific soil drydowns is
more difficult. By analyzing Noah soil drying rates along-
side the observations from SMAP, we can offer guidance into
the strengths and limitations of Noah-simulated soil moisture
dynamics. In addition, the model helps guide and confirm
our understanding of the relationship between surface drying
rates and surface evaporation rates.

2 Data and methods

2.1 Data

Our study utilizes SMAP, North American Land Data As-
similation System phase 2 (NLDAS-2), and normalized dif-
ference vegetation index (NDVI) data from the nearly 2-year
period since SMAP began operation: 31 March 2015 through
27 January 2017.

Although SMAP and NDVI data are available globally,
the one-eighth degree NLDAS-2 forcing and simulation data
cover only North America. Therefore, our study is limited to
the continental land mass found between longitudes 124.9◦

and 67.1◦W and latitudes 25.1◦ and 52.9◦ N (Fig. 1).

2.1.1 SMAP retrievals

SMAP was launched in January 2015 and provides morn-
ing and evening (06:00 and 18:00 LT) estimates of VSM
(cm3 cm−3) globally every 1–3 days (Entekhabi et al., 2014).
Retrievals estimate soil moisture based on passive microwave
(1.41 GHz) brightness temperature and reach a nominal sens-
ing depth of 5 cm as described in Entekhabi et al. (2014). We
use the “enhanced” level 3 soil moisture data product, Ver-
sion 1, which is available from the National Snow and Ice
Data Center (O’Neill et al., 2016). The SMAP radiometer has
a native spatial resolution of 36 km, but this product utilizes
the Backus–Gilbert optimal interpolation algorithm to post
soil moisture retrievals onto the 9 km Equal-Area Scalable
Earth grid version 2 (EASE-2) (O’Neill et al., 2016). The
enhanced resolution version reveals spatial features not ap-
parent in the 36 km standard product and similarly meets the
mission goal of 0.040 cm3 cm−3 unbiased root mean squared
error (Chan et al., 2018). We use only morning overpasses

because the SMAP algorithm assigns one temperature to both
the soil and its overlying canopy, a condition that is best met
in the morning hours (Entekhabi et al., 2014; Jackson et al.,
2012). We exclude data that have been flagged for uncer-
tain quality due to dense vegetation (> 5 kg m−2), mountain-
ous terrain (> 3◦ slope standard deviation), and > 5 % of the
sensing area comprising frozen ground, snow, ice, precipita-
tion, or static water. These exclusions decrease the number of
SMAP observations by 56.5 %, mostly because of vegetation
in the eastern portion of North America. Figure 1a shows the
number of SMAP observations used in this study, after re-
moving flagged data. The domain consists of 136 422 SMAP
pixels. Un-flagged SMAP observations are found in 59 % of
the pixels, so these 79 987 “active” SMAP pixels are the fo-
cus of our study.

2.1.2 NLDAS-2 precipitation, PE, and soil texture

We use precipitation and PE data from the NLDAS-2 pri-
mary forcing fields (Xia et al., 2012b). Precipitation is from
the NCEP Climate Prediction Center’s unified gauge-based
precipitation, which has been adjusted for orographic effects
(Daly et al., 1994). Other meteorological forcings are from
the National Center for Environmental Prediction (NCEP)
North American Regional Reanalysis (NARR), interpolated
to the NLDAS-2 one-eighth degree grid and disaggregated
to hourly frequency (Cosgrove et al., 2003). PE is calculated
from those forcings using the modified Penman scheme of
Mahrt and Ek (1984).

Within the United States, NLDAS-2 provides a gridded
soil texture field derived from 1 km State Soil Geographic
(STATSGO) data (Miller and White, 1998; Mitchell et al.,
2004). Although there are 15 categories, some types (silt,
sandy clay loam, sandy clay, silty clay, organic materials, wa-
ter, and bedrock) individually occupy less than 3 % of the do-
main. We therefore focus on the four most common textures:
loam (26.0 %), silt loam (25.9 %), sandy loam (23.0 %), and
sand (6.8 %).

2.1.3 Vegetation data

NASA’s Terra and Aqua satellites carry the MODIS instru-
ment and provide NDVI data every 16 days globally, at a
resolution of 1 km. NDVI is linearly interpolated in the days
between retrievals and upscaled to match the SMAP grid by
taking the arithmetic mean of the MODIS cells contained in
each SMAP pixel.

2.1.4 NLDAS-2 Noah simulations

As part of the NLDAS-2 project, Noah LSM simulations are
run from 1979 to present and archived at the Goddard Earth
Sciences Data and Information Services Center (GES DISC)
(Xia et al., 2012b). Our study utilizes surface evaporation
rates and surface soil moisture from these simulations. The
top soil layer in the Noah LSM is 0–10 cm, twice the ap-
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Figure 1. (a) Number of SMAP observations used in this study. (b) Number of drying rates calculated from SMAP observations and Noah
simulations. (c) Median of SMAP drying rates. (d) Median of Noah drying rates. Drying rates are expressed as changes in volume per day
(cm3 cm−3 day−1). Note that artifacts of SMAP’s orbital track are visible in (a) and (b).

proximate sensing depth of SMAP. Soil moisture values are
converted from kg m−2 to cm3 cm−3 to be consistent with
SMAP units.

Noah partitions evapotranspiration between surface evap-
oration and transpiration through a parameterization of the
fraction of land that has green vegetation (FG) (Chen and
Dudhia, 2001). This parameter is defined over a 1◦ grid by
Gutman and Ignatov (1998) using 5 years of NDVI data ac-
cording to Eq. (1):

FG =
NDVI−NDVI0

NDVI∞−NDVI0
, (1)

where NDVI0 is over bare soil and NDVI∞ is over dense
vegetation. Thus, Noah simulations use vegetation climatol-
ogy at each point, not vegetation observations. In contrast,
our analyses are based on NDVI observations themselves
(Sect. 2.1.3). To understand how this difference might affect
the Noah results presented here, we additionally look at the
FG values in our study domain, which are provided as part
of the NLDAS-2 Noah simulation dataset.

2.1.5 Supplementary simulations

SMAP and Noah do not represent identical soil depths. In ad-
dition to Noah simulations from NLDAS-2, we run the most
recent Noah version (3.4.1) in two configurations for six US
locations: Fort Cobb, OK; Little River, GA; Little Washita,
OK; Marena, OK; St. Joseph’s, IN; and Walnut Gulch, AZ.
One simulation uses the default 0–10 cm layer one depth.
The other uses a modified 0–5 cm layer one depth. In the lat-
ter case, layer two has been increased by 5 cm (to 5–40 cm)
to keep total model soil depth unchanged. Further informa-
tion regarding the location, soil type, and vegetation cover in
these locations can be found in Shellito et al. (2016a). The

forcing data and parameter values for these simulations are
taken from the NLDAS-2 data corresponding to each loca-
tion. With these supplementary simulations, we can assess
how Noah model soil moisture dynamics would change if its
first layer depth were 0–5 cm, instead of 0–10 cm.

2.2 Methods

2.2.1 Pixel matchups

Our analyses require matching simulated or observed drying
rates with concurrent observations of PE, vegetation, and soil
type. These datasets come from different sources (NLDAS-
2 and MODIS) and therefore have been re-gridded onto the
SMAP EASE-2 grid.

MODIS grid cells, which are finer than SMAP’s grid,
have been averaged together within each SMAP pixel. The
NLDAS-2 grid is only slightly coarser than SMAP’s grid, so
occasionally the same data will be mapped into two SMAP
pixels. Though this is not ideal, it is preferable to basing our
analysis on the NLDAS-2 grid, which would force us to ex-
clude some SMAP pixels or blend them with their neighbor
when they fall within the same NLDAS-2 pixel.

2.2.2 Drydown periods

We utilize the precipitation field in the NLDAS-2 forcing
dataset to select drydowns for our analysis. Following Shel-
lito et al. (2016b), a drydown is defined by a dry period that
follows a soil wetting event. We automate this selection pro-
cess for all pixels according to the following logic: (1) the
event precipitation depth must surpass 5 mm in a 24 h pe-
riod; (2) the dry period must begin after the event precipi-
tation stops and end a day before 2 mm or more additional
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precipitation accumulates; and (3) the dry period must be at
least 3 days long (Fig. 2). We note this differs from McColl
et al. (2017a) that based the identification of dry down peri-
ods on the soil moisture time series alone and did not use any
precipitation data. Results are insensitive to minor changes
in the drydown selection criteria.

2.2.3 Calculation of drying rates

With both SMAP and Noah soil moisture data, we calculate
soil drying rates contained within the drydown periods. As
in Shellito et al. (2016b) we use a simple finite differences
approach:

dθ
dt
=
θn+1− θn

tn+1− tn
. (2)

θ is surface soil moisture content (cm3 cm−3), t is time
(days), and n and n+ 1 correspond to consecutive observa-
tions (Fig. 3). SMAP data are available every 1–3 days, so
drying rates span at least 24 h. Although simulated data are
available hourly, we only use Noah soil moisture values that
are concurrent with SMAP observations. This ensures that
sampling frequency will not affect our comparison to Noah.

Our analysis produces 4 738 702 drying rates for both
SMAP and Noah, or an average of 75.2 per active SMAP
pixel (Fig. 1b). Figure 2 shows two representative soil mois-
ture time series, the drydown periods contained therein, and
the associated drying rates that have been calculated.

Preliminary analyses showed that SMAP observations can
occasionally reach and stay at a maximum value, produc-
ing drying rates of exactly 0 mm day−1. This is a feature of
the SMAP algorithm, indicative of having reached its upper
limit, and does not reflect the drying process (Andreas Col-
liander, personal communication, 2017). Cases where VSM
stays constant at saturation during identified drydowns have
been excluded.

The units of drying as calculated from SMAP surface soil
moisture are cm3 cm−3 day−1, a measure of the change in
moisture volume through time. We express soil drying in
two other ways. First, it is also useful to express drying
rate in terms of the depth of water lost from the surface,
to match the units of potential and actual evaporation. To
convert from cm3 cm−3 day−1 (volumetric change per day)
to mm day−1, we multiply SMAP-observed drying rates by
SMAP’s nominal sensing depth (50 mm, Entekhabi et al.,
2014), and Noah-simulated drying rates by Noah’s first layer
thickness (100 mm). Second, we convert the drying rate to an
evaporative efficiency: the fraction of PE that is realized by
the above-calculated water loss.

The surface soil drying rate is a proxy for direct evapora-
tion from the soil. Most vertical redistribution of precipita-
tion occurs within hours of rainfall; thus these intervals are
typically not captured by the SMAP overpass intervals used
to calculate drying rates (Fig. 3). In the Noah LSM,ET is par-
titioned between evaporation and transpiration, the former of

which removes moisture only from the top model layer. In
Fig. 4 we evaluate the correspondence of Noah evaporation
with the drying rate calculated from the simulated soil mois-
ture time series. The slope of the regression line is nearly
1 (0.86). We therefore call the drying rate in mm day−1 the
“equivalent evaporation rate” of the land surface. Points ly-
ing above the 1 : 1 line indicate instances when transpiration
and/or drainage are contributing to soil drying in addition to
evaporation. The role of transpiration, however, is small be-
cause most plant types have 90 % of their roots below 10 cm
(Ek et al., 2003). In addition, Fig. 4 shows that the majority
of points (58.4 %) lie below the 1 : 1 line, indicating that dur-
ing most drydown periods, the magnitude of capillary rise is
larger than drainage and transpiration combined. The equiv-
alent evaporation rate is therefore a slightly conservative es-
timate (on average).

There is no equivalent way to test if SMAP drying rates
also correspond to direct evaporation rates. However, it is
reasonable to assume that the drying rates are similarly a
proxy for direct evaporation. The equivalent evaporation rate
of SMAP is based on a sensing depth that is half that of
Noah’s surface layer, so it will be a more conservative es-
timate than Noah’s evaporation rate. There are fewer roots in
this layer and thus less water loss from transpiration. In ad-
dition, any evaporation from below the 5 cm sensing depth is
not accounted for. Because the evaporative efficiency is de-
rived from the equivalent evaporation rate, this quantity will
also be conservative, particularly for SMAP.

The evaporative efficiencies themselves are relatively low
for both SMAP and Noah (Fig. 5). Ninety percent of the val-
ues are lower than 0.27 and 0.21, respectively. SMAP even
exhibits a considerable number of evaporative efficiency val-
ues below zero, indicating increases in soil moisture between
consecutive overpasses. These negative evaporation efficien-
cies can be attributed to (1) the expected noise in SMAP ob-
servations (up to 0.04 cm3 cm−3), (2) the fact that soil drying
rates trend towards zero in a given dry period (Figs. 2 and 3),
thereby increasing the role of the aforementioned noise, and
(3) small amounts of rainfall that are insufficient to trigger
the end of a drydown period (< 2 mm) but that cause real
increases in soil moisture. Several instances of these neg-
ative evaporation rates can be seen in the upper panels of
Fig. 2: late November at Fort Cobb, OK, and mid-October at
Marena, OK.

We quantify the role of these three factors by flag-
ging overpass intervals that (1) exhibit changes in soil
moisture less than 0.04 cm3 cm−3, (2) include the driest
10 % of SMAP observations (soil moisture values below
0.05 cm3 cm−3), and (3) have up to 2 mm precipitation.
Overpass intervals that meet one or more of these conditions
account for nearly all (98.5 %) of the negative evaporative ef-
ficiencies observed by SMAP. The remaining cases may be
due to rainfall not included in the NLDAS forcing data.

We have chosen not to exclude the negative evaporative ef-
ficiency values from our analyses, as removing only a subset
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Figure 2. Precipitation (c), soil moisture (b), and drying rates (a) for two sites in Oklahoma: Fort Cobb (98.573◦W, 35.342◦ E) and Marena
(−97.217◦W, 36.063◦ E). Drydowns are indicated with green shading.

Figure 3. Detail from one drydown period. Drying rates a, b, c, and
d, are the changes in soil moisture divided by the width of each
calculation interval, which is the time between consecutive SMAP
overpasses. These are shown with dotted lines (t1 to t2, t2 to t3, etc).
Each drydown’s PE and NDVI are taken as the average observed
within the respective calculation intervals.

of noise from the full population would bias the results. Even
with this noise included, clear relationships emerge when we
compare median values to important variables (e.g., Fig. 7).

Alternative methods of analyzing drydowns, such as the
exponential model used in McColl et al. (2017a) and Shellito
et al. (2016b), must cope with the exact same noise in SMAP
observations. In those cases, the noise just contributes to mis-
fit in the exponential curve rather than negative evaporation
values from individual observations. Shellito et al. (2016b)
found nearly identical results using an exponential fit as finite
differences, so our analyses are expected to be valid despite
the noise inherent in SMAP observations.

Alternative methods of selecting drydowns, such as stricter
drydown length requirements, are unrelated to the number of

Figure 4. Scatter and contour plot showing correspondence of Noah
layer one drying and evaporation rates. Displayed green markers
show 0.1 % of the 5+million data points. Contours are drawn using
all data. The 1 : 1 line is shown in solid gray. The best fit line is
shown in dashed gray. R = 0.47.

noisy observations; only two observation go into each calcu-
lation, and SMAP overpasses occur every 1 to 3 days. There-
fore, drydown periods of only 3 days are still useful and do
not disproportionately contribute to noisy observations.

2.2.4 Effects of meteorologic conditions and land
surface states

We quantify the roles of time since rainfall, surface moisture
content, PE, vegetation, and soil texture on drying dynamics
using the data described in Sect. 2.1. For each rate calculated
(Eq. 2), we record the arithmetic mean of the associated me-
teorologic conditions and land surface states between tn and
tn+1 (Fig. 3).
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Figure 5. Histograms (200 bins) of evaporative efficiencies ob-
served by SMAP and simulated by Noah.

With these data, we provide continent-wide summaries of
the correlation between each variable and the soil drying
rates. Because we have nearly 5 million data points, we bin
the data according to meteorologic condition or land surface
state and plot only median drying rates in each bin. In all
cases, bootstrapping is employed to estimate standard errors
(Efron and Tibshirani, 1993). Bootstrapped statistics are gen-
erated using 500 instances of 100 random samples.

3 Results

The drying rates observed by SMAP and simulated by Noah
decrease with time since rainfall cessation, consistent with
prior results using similar data (McColl et al., 2017a; Shellito
et al., 2016b). Thus, as the soil dries following precipitation
(Fig. 6a), the median drying rates (Fig. 6b) and median equiv-
alent evaporation rates (Fig. 6c) also decrease. The form of
the relationship between drying rate and VSM is described
in more detail below.

Although SMAP and Noah both show that drying slows
with increased time since rainfall, considerable differences
exist. Directly following precipitation, drying rates are higher
based on SMAP data than simulated by Noah, by a fac-
tor of 2 (Fig. 6b). However, SMAP drying rates decrease
more quickly through time. After about 10 days, Noah dry-
ing rates are equal to or slightly faster than SMAP rates.
The SMAP and Noah equivalent evaporation rates are similar
(∼ 0.8 mm day−1) directly following rainfall (Fig. 6c). Evap-
oration from Noah occurs over twice the approximate SMAP
sensing depth, making up for the differences in drying rate
(Fig. 6b) and contributing to higher equivalent evaporation
rates than from SMAP after ∼ 5 days.

In addition to the more rapid decrease in drying rates ob-
served with SMAP shown in Fig. 6, there are also obvious ge-
ographic differences between SMAP and Noah drying rates
(Fig. 1c and d). Median values of drying rates are calculated
in a 25 pixel (5 by 5) moving window. Data are displayed

Figure 6. Soil moisture (a), drying rate (b), and equivalent evapora-
tion rate (c) as a function of days into the drydown period. Markers
show median values. Error bars show standard error.

at the center of each window whenever at least 100 drying
rates are contributing to the median. Median drying rates
from SMAP and Noah are similar in the southwest region of
the continent where precipitation events are small and infre-
quent. In these areas, soil moisture remains near its residual
value for much of the time. As a result, the large differences
that exist immediately after rain events (Fig. 6b) occur in-
frequently and do not influence the median values shown in
Fig. 1c and d. In wetter regions, median drying rates from
SMAP are considerably faster than simulated by Noah, at
least partly because data from several days after precipitation
events affect the median value.

To further investigate the causes of the different drying
rates shown above, we consider the variables we understand
to control the soil drying process: moisture supply (surface
VSM), atmospheric demand (PE), vegetation cover, and soil
texture.

3.1 Soil moisture and PE

We now investigate how surface soil moisture and PE influ-
ence drying rates (Fig. 7). We have divided the drying rate
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Figure 7. Drying rates and efficiencies for SMAP (a–c) and
Noah (d–f) as a function of surface soil moisture content and three
PE terciles. The top row shows drying rates, the middle row shows
equivalent evaporation rates, and the bottom row shows evaporative
efficiencies. Markers show median values. Error bars show standard
error.

data into terciles according to PE rate. A single PE value is
used for each pair of corresponding SMAP and Noah drying
rates, so the terciles are composed of an identical group (in
terms of location and time) of observations from SMAP and
Noah. We use 10 equal-width bins of increasing soil mois-
ture. VSM is not necessarily equal for corresponding SMAP
and Noah observations.

SMAP drying rates are highest when surface VSM and
PE are high. The slowest rates are found when the soil is
dry, regardless of PE. Drying rates monotonically increase
with surface soil moisture, except in the low PE tercile, where
there is a plateau in drying rates for soil moisture exceeding
0.15 cm3 cm−3. Across most of the range of soil moisture
values, drying rates are clearly greater when PE is high.

Noah drying rates shows similar, though smaller, re-
sponses to PE and soil moisture. However, there is no plateau
in Noah drying rate when PE is low and soil moisture is high.
SMAP shows a larger sensitivity to PE than Noah does and
much faster drying rates overall. The differences between
SMAP and Noah equivalent evaporation rates (Fig. 7b and e)
are smaller than the differences in drying rates because the
top model layer thickness in Noah is twice SMAP’s sensing
depth.

The bottom panels of Fig. 7 show that evaporative effi-
ciency depends almost linearly on soil moisture and is not
affected by the PE rate, for both SMAP and Noah. At most
VSM levels, the standard errors overlap between PE terciles.

3.2 Vegetation

The influence of vegetation on drying rates is complex – veg-
etation may slow drying due to shading or increase it due to
transpiration from the near surface soil. An additional con-
founding factor is that vegetation tends to be more exten-
sive in the summer months when PE is also high. A positive
correlation exists between PE and NDVI across the analy-
sis domain, with the exception of the lowest NDVI quan-
tile (Fig. 8). However, this domain-wide relationship masks
strong regional variations. In the humid Upper Midwest, PE
and NDVI are strongly positively correlated. In contrast,
NDVI is always low and PE varies greatly throughout the
year in the desert southwest. Given that higher PE leads to
higher drying rates (Sect. 3.1), we control for this effect by
considering evaporative efficiency, which is normalized by
PE.

Figure 9 illustrates the relationship between vegetation
amount (as indicated by NDVI) and drying rates, equivalent
evaporation rates, and evaporative efficiencies. Correspond-
ing SMAP and Noah observations are divided into 10 vege-
tation quantiles. The data are further divided into wet, transi-
tion, and dry soil (three quantiles), as observed by SMAP or
simulated by Noah. Thus, each pair of corresponding SMAP
and Noah values is included in the same vegetation quantile,
but not necessarily in the same VSM quantile.

When the soil is dry, SMAP drying and equivalent evap-
oration rates are low regardless of vegetation level (Fig. 9a
and b), consistent with the results shown above (Fig. 7).
Similarly, the evaporative efficiency is very low for dry soil
regardless of vegetation amount. For the intermediate soil
moisture tercile, SMAP drying and evaporation rates both
decrease as vegetation cover increases. The wettest tercile
exhibits the lowest rates with intermediate amounts of vege-
tation cover and higher rates with both less and more vege-
tation. Once the drying rates are normalized by PE however,
the relationship between soil drying and vegetation is more
consistent across soil moisture levels (Fig. 9c): evaporative
efficiency consistently decreases as vegetation increases, un-
less the soil is dry and drying rates are effectively zero. Evap-
orative efficiency decreases by a factor of 2 to 3 between the
lowest and the highest vegetation quantiles.

Noah simulations exhibit little or no relationship between
vegetation and drying or evaporation rates (Fig. 9d and e).
For the wettest soil tercile, evaporative efficiency does appear
to decrease with vegetation cover, although the sensitivity is
much less than found using SMAP observations.
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Figure 8. (a) Circles show median PE as a function of eight equal-width bins of increasing NDVI for all drydowns used in this study. Squares
show average monthly relationships between PE and NDVI in two regions. (b) Extent indicators show locations of two regions.

Figure 9. As in Fig. 7, but drying rates are a function of NDVI
(eight quantiles, on x-axis) and surface soil moisture content (three
quantiles, by color).

3.3 Soil texture

The four main soil types in the conterminous United States
(sand, sandy loam, loam, and silt loam) all exhibit similar
drying dynamics as observed by SMAP. Figure 10a–c show
that differences between the four texture classes are small:
drying rates and equivalent evaporation rates are slightly
higher for loam, especially in wet soils, and slightly lower for
silt loam, especially in soils of intermediate wetness (Fig. 10a
and b). Only minor differences exist between other texture
types. The observed differences diminish slightly when dry-

Figure 10. As in Fig. 7, but drying rates are divided among the
four most prevalent soil texture classes. Markers are omitted if
fewer than 0.05 % of the total calculated drying rates fall within
the VSM/soil texture category.

ing is expressed as evaporative efficiency (Fig. 10c), suggest-
ing that some portion of the observed differences in drying
and evaporation rates are due to spatial variations in PE that
covary with soil texture.

In contrast, drying dynamics simulated by Noah (Fig. 10d–
f) exhibit large differences between the four most common
texture classes. The coarsest texture (sand) shows the fastest
drying rates, evaporation rates, and evaporative efficiencies.
The finest texture (silt loam) shows the slowest. In wet soil
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Figure 11. NDVI and FG at six sites in the study domain.

conditions, the median evaporative efficiency for sand is ap-
proximately 5 times higher than that of other texture classes.

3.4 Inconsistencies between SMAP and Noah

SMAP drying dynamics are dependent on environmental
states observed at the time of each overpass. Noah simula-
tions, however, depend on a vegetation parameter that has
been calculated from climatology: its FG parameter is de-
rived from 5 years of NDVI observations (Gutman and Ig-
natov, 1998). In addition, Noah results reflect the behavior
of the 10 cm surface layer, whereas SMAP nominally senses
only the top 5 cm. These two inconsistencies must be consid-
ered carefully to fairly compare SMAP and Noah results.

3.4.1 NDVI vs. FG

The SMAP satellite observes varying land surface condi-
tions. NDVI provides one estimate of vegetation status at the
time of each SMAP retrieval. In contrast, the FG parame-
ter used in Noah is based on the climatology of NDVI (Gut-
man and Ignatov, 1998). Therefore, the effect of vegetation
on Noah model states is simplified: the model simulations
cannot respond to deviations from climatology. Abnormally
high or low vegetation cover that may exist in any year as
indicated by NDVI (which was used for the analysis shown
in Fig. 9) will not affect the Noah simulation.

It is critical to evaluate if Noah’s limited sensitivity to veg-
etation (Fig. 9) is due to the potential mismatch between in-
stantaneous (used in our analysis) and climatological (used in

Figure 12. (a) Scatter plot comparing Noah drying rates between
simulations with different surface layer depths. R = 0.93. Best fit
intercept= 0, slope= 1.06. (b) Drying rate as a function of VSM
for six quantiles using the two Noah simulation depths. Markers
show median values. Error bars show standard errors.

the Noah simulation) vegetation state. The alternative is that
the lack of sensitivity to vegetation is attributable to the Noah
model structure itself. In Fig. 11, we show observed NDVI
and Noah’s climatological FG at six sites for the period of
record of SMAP data analyzed here. Because the NDVI scal-
ing parameters used to convert NDVI to FG (Eq. 1) are close
to 0 and 1 (Youlong Xia, personal communication, 2017), the
two variables can be plotted on the same axis. There are no
clear departures from climatology. This suggests the Noah
model structure is the source of the limited sensitivity of dry-
ing to vegetation amount, not the use of vegetation climatol-
ogy. Furthermore, recreating Fig. 9 using FG as the covari-
ate instead of NDVI does not substantially change the results
(not shown).

3.4.2 Noah simulation depth

Drying dynamics may be affected by the depth of soil being
sensed or modeled (Rondinelli et al., 2015; Shellito et al.,
2016b). We use the six supplementary simulations described
in Sect. 2.1.5 to compare the drying characteristics of Noah
simulations from a 10 cm surface layer against a 5 cm surface
layer. The former is the standard setup and was used for the
results shown above. Figure 12 shows that the modeled de-
pendence of drying rates on surface VSM is nearly identical
between the simulations with different surface layer depths.
Drying rates increase by only 6 % when the shallower layer is
used. This slight change does shift Noah drying rates towards
the trends documented by SMAP observations, but it is not
large enough to account for the approximately 4-fold differ-
ences between the two shown in Fig. 7a and d. These results
suggest that the differences in dynamics between SMAP and
Noah are not attributable to the difference in depth between
the two sources, but instead to the model’s structure itself.
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4 Discussion

The remotely sensed data from NASA’s SMAP mission,
combined with modeled data, provide insight into the envi-
ronmental factors that affect surface soil moisture dynamics
and direct evaporation from soil. The results presented here
are based on correlations between environmental factors and
soil drying rates, so it is not possible to prove cause–effect
relationships exist. However, the results are consistent with
ground-based observations (e.g., Kurc and Small, 2004) and
physics-based relationships included in models (e.g., Laio et
al., 2001). Therefore, results confirm that these fundamental
relationships exist on the continental scale.

SMAP data show that the land surface dries rapidly imme-
diately after rainfall. With time, the soil dries and the drying
rate slows, the latter approaching zero after ∼ 10 days. Noah
simulations also exhibit this trend, but the drying rates are
slower directly after rainfall and persist at nonzero values for
longer than SMAP rates do, indicating a more linear drying
process (Fig. 6).

To constrain the factors affecting the drying process, we
simultaneously consider the supply of water (soil moisture)
and the atmospheric demand for it (PE). When the surface
soil is wet, only atmospheric demand should limit evapora-
tion rates (stage one evaporation). When the surface soil is
dry, moisture supply further restricts evaporation rates (stage
two evaporation). Our study finds that, on SMAP spatial and
temporal scales, the satellite is observing a system that is pre-
dominantly water-limited (McColl et al., 2017a). This is sup-
ported by the following observations (Fig. 7).

1. In most cases, drying and evaporation rates are lin-
early related to soil moisture content. Such consistent
dependence on moisture supply indicates water-limited
conditions. In contrast, energy-limited conditions would
show evaporation rates to be insensitive to soil moisture.

2. The sensitivity of drying rates to soil moisture depends
on PE. This, along with Fig. 4, which shows an approx-
imately 1 : 1 ratio of drying rates to evaporation rates,
supports the supposition that drying rates are controlled
mainly by evaporation rates instead of by drainage or
diffusion rates, as they would be in an energy-limited
environment.

3. In the low PE tercile, there is a plateau in drying rates
when soil moisture exceeds 0.15 cm3 cm−3 (Fig. 7a).
Such a plateau could indicate an energy-limited envi-
ronment. However, the evaporative efficiency does not
also reach a plateau at high VSM. This suggests varia-
tions in PE within the lowest PE tercile are responsible
for the plateau observed in Fig. 7a and b – the wettest
soils are found in environments with the very lowest PE
rates.

Noah simulations are consistent with the results from SMAP
data. In general, drying rates from Noah are much lower

than those from SMAP, but the equivalent evaporation rates
from Noah are the same as or higher than those from SMAP
(Fig. 6c) because the layer one depth is greater and soil mois-
ture levels are generally higher in Noah (Fig. 6a). Noah dry-
ing rates do not plateau in the low PE tercile, further support-
ing the idea that the system is water-limited.

It is possible that SMAP drying rates are slightly exagger-
ated due to decreases in L-band sensing depth that accom-
pany wet soil. After rainfall, moisture in the top couple of
centimeters could dominate the signal, leading to the entire
0–5 cm sensing depth being assigned a moisture level that
is only present at the very surface. As the soil dries and be-
comes more evenly distributed within the sensing depth, such
abnormalities would dissipate.

The calculated values for evaporative efficiency are quite
low (Fig. 5); 90 % of values are below ∼ 0.25. This suggests
evaporation from the surface satisfies only a small fraction of
the atmospheric demand. The fraction is not larger for one or
more of the following reasons: (1) on this spatial and tempo-
ral scale, evaporation is highly water-limited; (2) most plant
roots are deeper than ∼ 5 cm, so transpiration draws water
from depths below the surface layer and thus does not con-
tribute to the SMAP-based accounting of drying analyzed
here; (3) similarly, if any evaporation draws moisture from
below SMAP’s sensing depth, it will not be accounted for
here; and (4) the sampling interval of SMAP is too low to
capture the fastest evaporation rates, which occur soon af-
ter rainfall. Only 6.5 % of the calculated drying rates include
an observation from within the first 12 h after precipitation,
when the fastest drying and highest evaporative efficiency is
likely to occur. For example, in Fig. 3, the first observation,
t1, is almost 2 days after rainfall cessation.

While VSM and PE clearly influence soil drying, SMAP
observations also show that vegetation plays an important
role in determining soil drying rates. These effects are most
obvious once drying rates are normalized by PE because veg-
etation (as indicated by NDVI) and PE both tend to be great-
est in the summer months (Fig. 8). Evaporative efficiency de-
creases with increasing vegetation cover (Fig. 9c), unless the
soil is dry and evaporative efficiency is close to zero. This
means that at a given moisture level and PE rate, the sur-
face soil of a parcel of land will dry more slowly if it has
vegetation on it than if it does not. This is consistent with
ground-based observations that show direct evaporation can
be limited by vegetation (e.g., Breshears et al., 1998).

In comparison to SMAP, the effects of vegetation on dry-
ing in Noah are minimal (Fig. 9e–f). These results can be
understood given the model’s formulation of evapotranspira-
tion (Chen and Dudhia, 2001). Direct soil evaporation only
occurs over the fraction of land surface not shaded by the
canopy (1−FG), so evaporation decreases with more veg-
etation. Transpiration only occurs over the fraction of land
surface that has a canopy (FG), so transpiration increases
with more vegetation. Our results show these two effects are
balanced in dry and intermediate wetness soils. Soil in the
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wettest tercile exhibit slightly higher evaporative efficiencies
from bare soil than from vegetated soil (Fig. 9f). The Noah
results indicate that in the top 10 cm of soil, moisture from
rainfall enhances evaporation from bare ground more than it
does transpiration from vegetated ground.

Vegetation effects are much greater as observed by SMAP
than simulated by Noah. Therefore, the direct evaporation
flux in Noah should be greater (at a given VSM and PE),
which would result in higher surface drying efficiencies
when vegetation is sparse. Betts et al. (1997) and Ek et
al. (2003) both modified Noah’s bare soil evaporation func-
tion to magnify the decrease in evaporation as the surface
dries. The SMAP observations suggest further adjustments
are needed.

The results in Fig. 10 show that the sensitivity to soil tex-
ture is too high in Noah. SMAP shows only small differ-
ences in drying dynamics related to texture classes (here and
McColl et al., 2017a), whereas Noah simulations indicate
variations of a factor of 5 between sand and other texture
classes. Noah-simulated results conform to the expectation
that coarser soils (sand and sandy loam) dry faster than fine-
grained soils (silt loam). (Soil infiltration and redistribution
parameters are indeed selected according to texture class;
Chen and Dudhia, 2001). On the contrary, our SMAP-based
results show the role of soil textures to be less important than
the other factors analyzed here. It is possible that improved
soil texture maps could bring SMAP and Noah results into
closer agreement, but the heterogeneity of soils even within
a single texture class (Gutmann and Small, 2005) makes it
unlikely that the solution will come from improving texture
maps alone.

The differences in behavior between SMAP and Noah can
also partially be attributed to differences in sensing and simu-
lation depths. We expect thicker surface layer dynamics to be
dampened when compared to a thinner layer (e.g., Rondinelli
et al., 2015). However, changing Noah’s layer one soil depth
from 0–10 to 0–5 cm only increases soil drying rates by 6 %
(Fig. 12), implying that the model structure itself prevents
Noah from accurately reproducing the surface soil moisture
dynamics observed by SMAP.

5 Conclusion

SMAP-observed and Noah-simulated soil moisture and dry-
ing rates decrease with time since precipitation. SMAP dry-
ing rates are faster than Noah-simulated drying rates in the
first 8 days after rainfall, but slower afterwards. Because
Noah’s top soil layer is twice the depth that SMAP senses, its
equivalent evaporation rates are nearly the same as SMAP’s
soon after precipitation and higher afterwards.

SMAP-observed and Noah-simulated soil drying rates
both vary linearly with soil moisture content, evidence that
continental-scale soil moisture dynamics operate in a water-
limited system.

Equivalent evaporation rates from SMAP and Noah rarely
exceed 1 mm day−1. Expressed as evaporative efficiency,
90 % of the calculated rates fall below 0.27 (SMAP) or 0.21
(Noah). These values are far below unity, providing further
evidence of a water-limited environment. However, account-
ing for transpiration of water from below the 5 or 10 cm sur-
face layer would shift total ET efficiencies closer to 1.

SMAP and Noah both show that high atmospheric demand
for moisture (high PE) increases the sensitivity of drying
rates to soil moisture content.

More vegetation amount, indicated by higher NDVI, de-
creases the surface drying efficiency: SMAP shows a 3-fold
evaporation efficiency decrease between sparsely vegetated
and densely vegetated pixels. This suggests that the decreases
in evaporation from canopy shading are not offset by in-
creases in transpiration from the shallow soil layer. Noah
shows a much smaller decrease in evaporative efficiency,
only for wet soils, suggesting a deficiency in the model struc-
ture.

Soil texture class has a small influence on SMAP drying
dynamics. Noah drying dynamics are strongly affected by
soil texture class, as prescribed by its soil hydraulic property
parameterization.

This study has demonstrated that SMAP exhibits unprece-
dented soil drying sensitivity across at least three of the di-
mensions analyzed (soil moisture supply, PE rate, and vege-
tation cover) that is largely missed by Noah (e.g., Figs. 6, 7,
and 9). This provides encouraging evidence of the potential
to use SMAP observations to improve model portrayals of
soil drying.

Data availability. The SMAP retrievals (https://doi.org/10.5067/
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