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A B S T R A C T   

Despite the myriad of remote sensing techniques currently used to map surface water, a gap remains in our 
ability to rapidly map inundation from flooding at the required temporal resolution to understand how floods 
evolve. However, the recent launch of constellations of Global Navigation Satellite System-Reflectometry (GNSS- 
R) satellites can provide data at a more frequent temporal repeat than a single satellite. These L-band instruments 
could provide moderate spatial resolution inundation maps at a better temporal resolution than other satellite 
radars. This paper describes a retrieval algorithm for flood inundation mapping using GNSS-R data from the 
Cyclone GNSS (CYGNSS) constellation. The algorithm employs a simple dielectric model to retrieve fractional 
inundation from an observation of reflectivity, requiring parameterizations of soil surface and water roughness as 
well as ancillary soil moisture data. Here, we give a brief overview of the model, describe our parameterization 
scheme, and present inundation maps using CYGNSS data. We describe four case studies (from the Amazon, 
Mozambique, Mali, and Australia) and compare the CYGNSS inundation maps to other surface water data 
(SWAMPS, PALSAR-2, Dartmouth Flood Observatory, MODIS, and the Global Surface Water Explorer). We 
identify sources of uncertainty in the CYGNSS inundation maps and discuss possible reasons for discrepancies 
between the inundation retrievals. We introduce the data portal, which houses the CYGNSS inundation maps, for 
use by the science community.   

1. Introduction 

1.1. Inundation mapping 

Mapping the extent and duration of surface flooding and inundation 
is important for numerous societal and scientific applications, ranging 
from understanding feedbacks between seasonal changes in wetlands 
and the emission of methane to pinpointing communities most affected 
by extreme weather events in near real time (Baqir et al., 2012; Durack 
et al., 2012; Melton et al., 2013; Ringeval et al., 2010; Shindell et al., 
2004). A myriad of approaches for mapping surface water already exists, 
and the favored approach depends on the environmental conditions and 
desired spatiotemporal resolution of the information. 

In situ observations, which are point measurements, may be made 
during field campaigns or after a flood has receded. These observations 
are difficult to collect and generally not collected with any regularity. 
Because of this, satellite remote sensing is often the tool of choice for 

mapping surface water, but these data also come with caveats depending 
on the specific type of remote sensing to be used. Optical indices, which 
can be very successful at mapping open water, underestimate the extent 
of surface water globally as they often fail to sense water beneath 
vegetation (Lefebvre et al., 2019), and there is significant disagreement 
in the delineation of surface water in wetlands among the different 
indices (Nakaegawa, 2012). Optical data are also obscured by cloud 
cover, which degrades the temporal revisit time in the often cloud- 
covered tropics and usually prevents the data from being used during 
extreme weather events. In an attempt to mitigate cloud cover issues, 
data products from optical sensors are often produced as an aggregation 
of data over longer time windows, though this is often not sufficient in 
the tropics or northern high latitudes, where clouds can be present for 
months at a time. 

Data from microwave remote sensing instruments (i.e., radiometers 
or active radar) can penetrate some amount of vegetation cover and are 
insensitive to clouds, and there is a long history of researchers using 
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these techniques to map inundation and flooding (e.g., (Prigent et al., 
2001; Schroeder et al., 2015)). However, these data also have their 
limitations. Inundation products derived from radiometers like GIEMS-2 
(Prigent et al., 2020) or SWAMPSv3 (Jensen and McDonald, 2019) are 
spatially coarse (>25 km). Depending on the time-averaging window, 
these products are either produced monthly (GIEMS-2) or daily 
(SWAMPSv3, though the actual temporal repeat is ~3 days). Flood maps 
derived from active radar like Sentinel-1, a C-band SAR, have the 
advantage of coming with a very fine spatial resolution (tens of m) but at 
the expense of a low temporal repeat (>1 week) (e.g., (Muro et al., 2016; 
Tsyganskaya et al., 2018)). NASA’s upcoming NISAR mission, a com-
bined L- and S-band active radar system, will have the same fine spatial 
resolution as Sentinel-1 but with a longer wavelength and increased 
vegetation penetration capability. Though, NISAR data will also come 
with the low temporal repeat frequency. For many applications, weekly 
revisits are sufficient—mapping seasonal changes in wetland extent or 
gradual changes in reservoir levels generally do not require data that are 
updated more frequently. 

Mapping surface flooding from extreme weather events does require 
shorter revisit times. Depending on the severity of the event, floodwaters 
may have already risen and receded within the span of several days, 
which means that flooding maps derived from active radar like Sentinel- 
1, NISAR, or otherwise, might serendipitously capture a snapshot of the 
event, but they cannot monitor the evolution of the flood, and it is 
difficult to know if the observations captured the extent of maximum 
flooding. Radiometer data are generally considered to be too coarse for 
mapping inundation from flooding except for very large events (Du 
et al., 2018). And, optical data, despite also having similar spatial res-
olution to active radar with a daily temporal repeat, often cannot be 
used due to the severe flooding events usually being associated with 
heavy cloud cover. 

1.2. CYGNSS 

Here we will describe an inundation dataset that is not constrained to 
the tradeoff in spatial and temporal resolution described above. We use a 
relatively new technique called Global Navigation Satellite System- 
Reflectometry (GNSS-R) that is currently employed by the Cyclone 
GNSS (CYGNSS) satellite constellation. Although this technique has its 
own unique limitations, which we will describe, it could also help fill the 
current gap in flood mapping from satellites and provide complemen-
tary inundation information to that which is already available. 

CYGNSS, NASA’s first Earth Venture Class Mission, was launched in 

December of 2016 for the purpose of retrieving ocean surface wind 
speed during hurricanes and tropical storms. Each one of CYGNSS’ eight 
satellites carries two downward-looking antennas and a GNSS-R 
receiver, which records surface reflected GNSS signals. GNSS is an um-
brella term for the various constellations of navigation satellites (e.g., 
the United States’ Global Positioning System (GPS) satellites). Signals 
from the GPS constellation, which CYGNSS was designed to receive, are 
L-band microwave signals, which are transmitted at right-handed cir-
cular polarization (RHCP) but are predominantly left-handed circular 
polarization (LHCP) upon reflection. The LHCP antennas onboard 
CYGNSS capture these surface-reflected GPS signals, and then scientists 
use them to infer information about the reflecting surface (Fig. 1). 

Depending on the properties of the surface, the reflected GPS signal 
will change. Smooth surfaces produce specular reflections, with most of 
the reflected signal’s energy directed towards the receiving antenna. 
Conversely, rougher surfaces produce diffuse reflections, which results 
in a weaker reflection. This sensitivity to surface roughness is one of the 
reasons why GNSS-R was chosen as the technology of choice for moni-
toring ocean surface wind speed with CYGNSS—stronger winds gener-
ally produce larger waves and rougher surfaces, and by correlating the 
amplitude of the reflected signal with ocean surface roughness, one can 
retrieve wind speed (Clarizia and Ruf, 2016; Ruf et al., 2013). 

Another compelling reason for utilizing GNSS-R for this task is that 
it’s an economical choice compared to other satellite remote sensing 
techniques. Because the transmitters are already on orbit, receivers can 
be manufactured and launched for the fraction of the price of a tradi-
tional L-band satellite. This makes constellations of satellites feasible, 
and constellations of satellites lower the temporal repeat time, an 
important factor in monitoring rapidly-developing extreme weather 
events. 

In addition to roughness, another important property of the surface 
affects reflected GPS signals: the dielectric constant. At L-band, the 
dielectric constant of most natural surfaces is primarily a function of the 
amount of water either in or on the land surface, which is why several 
satellites specifically designed for monitoring surface hydrology use L- 
band sensors (e.g., SMAP, SMOS, NISAR). Surfaces with higher dielectric 
constants, either from having higher soil moisture or more water on the 
surface, produce stronger reflections and vice versa (Ulaby et al., 1986). 
L-band signals are also able to penetrate denser vegetation than shorter 
wavelengths like C- or X-band, which are employed by other sensors like 
Sentinel-1. Leading up to the launch of CYGNSS, a handful of studies had 
explored the potential of spaceborne GNSS-R to retrieve either soil 
moisture or map surface water (Camps et al., 2016; Chew et al., 2016; 

Fig. 1. Information about the GNSS-R scattering geometry (top row) and surface characteristics that affect the reflected signal (bottom row).  
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Gleason et al., 2005), but these studies were in the minority compared to 
the amount of work done exploring GNSS-R and ocean remote sensing. 

However, once CYGNSS was launched, CYGNSS observations of 
surface reflectivity (Γ) over land surprisingly exhibited a strong sensi-
tivity to surface water features, some as small as 100–200 m wide 
(Fig. 2), due to the coherency of the reflected signal over smooth sur-
faces (Chew and Small, 2018). This led to several studies investigating 
the ability of CYGNSS to map inland surface water (e.g., (Al-Khaldi et al., 
2021; Chapman et al., 2022; Chew et al., 2018; Gerlein-Safdi and Ruf, 
2019; Li et al., 2022; Li et al., 2021; Morris et al., 2019; Rodriguez- 
Alvarez et al., 2019; Wan et al., 2019; Zeiger et al., 2022; Zhang et al., 
2021)). In addition, sensitivity to near-surface soil moisture was also 
identified (e.g., (Al-Khaldi et al., 2019; Chew and Small, 2018; Clarizia 
et al., 2019; Eroglu et al., 2019; Kim and Lakshmi, 2018; Senyurek et al., 
2020; Yan et al., 2020)). This solidified the interest in using spaceborne 
GNSS-R observations to retrieve geophysical variables related to 
terrestrial hydrology. There are now several GNSS-R missions that are 
either being developed by other governmental agencies (e.g., ESA’s 
HydroGNSS mission (Unwin et al., 2021)) or private companies (e.g., 
Spire, Muon Space) that also aim to retrieve similar hydrologic 
information. 

Here, we present an algorithm to map surface flooding and inunda-
tion using CYGNSS data. The algorithm takes a CYGNSS observation and 
ancillary information about soil moisture and surface roughness and 
uses these as input to a simple model that retrieves fractional surface 
inundation for a 3 × 3 km grid cell anywhere within the inclination of 
CYGNSS (±38 degrees latitude). We will describe our process for 
parameterization of the model, calibration and comparison inundation 
data, the errors and uncertainties in our inundation retrievals, and how 
to access them. Finally, we discuss plans to improve the GNSS-R inun-
dation retrievals, not only from CYGNSS but from future satellites like it. 

2. Methods 

2.1. CYGNSS data 

Because inundation mapping using spaceborne GNSS-R data is still a 
relatively nascent field, there is no one ‘industry standard’ approach to 
derive inundation maps. Instead, a variety of approaches have been 
suggested or tried. These approaches tend to use one of a few different 
variables derived from delay-Doppler maps (DDMs) produced by 
spaceborne GNSS-R receivers like CYGNSS. Our algorithm uses surface 
reflectivity (Γ), which is the peak value of the DDM (Pc), which is then 
corrected for receiver antenna gain (Gr), the GPS L1 wavelength (λ), GPS 
effective isotropic radiated power (PtGt), and bistatic range (Rts + Rsr) 
assuming coherent reflections (De Roo and Ulaby, 1994): 

Γ =
4π(Rts + Rsr)

2

PtGt

4πPc

Grλ2 (1) 

Γ is very commonly reported in decibels (dB). 
Although not shown in Eq. (1), the incidence angle (θ) of the re-

flected signal affects the relationship between Γ and the surface 
dielectric constant (more details below and in Box 1). Here, we correct 
for the effect of θ on Γ, as has been done in previous studies (e.g., (Al- 
Khaldi et al., 2019; Chew and Small, 2020a)). Assuming coherent re-
flections and a smooth reflecting surface, the relationship between θ and 
Γ can be modeled (Fig. S1). The effects of soil moisture on this rela-
tionship are negligible. Using this relationship, we correct our Γ obser-
vations for θ normalized to 25 degrees. For observations between ~0–40 
degrees, this correction is small—<0.1 dB. As θ increases, so does the 
magnitude of the correction. 

CYGNSS spatial footprints are, for coherent reflections, a minimum 
of 3.5 × 0.5 km large (see Supplement for a discussion on the footprint). 
Although the eight CYGNSS satellites sample both the ocean and land 
surface at all hours of the day, there are not enough of them (or enough 
receive channels on each instrument) to completely sample the surface 
within the span of a few days given this spatial footprint. Examples of 
typical spatial distributions of observations gridded at 3 × 3 km over 
three days are shown in Fig. 3a,b. Our goal is to provide a framework for 
which rapidly-updated inundation maps can be examined for areas 
potentially impacted by flooding. We selected a data aggregation period 
of 3 days to balance the competing needs of adequate spatial coverage 
and rapid updates to map the evolution of inundation events. 

Even using a data aggregation period of three days results in maps 
that are sparse enough that they are difficult to visually assess (i.e., 
Fig. 3a,b). In order to produce spatially-complete inundation maps, we 
first spatially interpolated CYGNSS observations over 3-day windows 
using the Previously-Observed Behavior Interpolation (POBI) method 
(Chew, 2021). POBI was formulated for use with the pseudo-random 
spatial sampling of CYGNSS. This method derives historical relation-
ships (here, we used data from 2017 to 2018) between observations of Γ 
in nearby grid cells and then applies these relationships to future, un- 
observed values of Γ. More simply, we calculate the linear relationship 
between reflectivity in one grid cell and reflectivity in a neighboring grid 
cell. If there is a future value of reflectivity in one grid cell but not the 
other, then the linear relationship can be used to estimate the reflectivity 
in the un-observed grid cell. This method better preserves the highly 
spatially heterogeneous nature of Γ observations than do other inter-
polation methods, and POBI has been shown to recreate truth observa-
tions with relatively low errors of 0.17 +/− 1.96 dB (Chew, 2021). 
However, it is not known how well the interpolation method performs in 
situations where inundated areas no longer follow historical patterns, as 
is often the case with floods with return intervals longer than the 
training dataset. We hypothesize that POBI performs better in regions 
that undergo regular and expected changes in inundation extent and will 
not work as well in regions experiencing flooding that was not also 
experienced during the time interval used for the creation of the 
neighbor relationships. We will assess this aspect of the POBI method 

Fig. 2. Mean 3 km gridded map of Γ observations for the year 2020. Black boxes indicate regions shown in the insets (the Amazon and Okavango Delta, from left to 
right). Higher values of Γ are observed in wet, topographically flat areas, and areas without significant vegetation. Few observations are found in high altitude 
regions exceeding 3000 m (e.g., Tibetan Plateau) due to software limitations. Data quality controls removed observations with very low signal (SNR < 2 dB), resulting 
in few observations in densely vegetated forests (e.g., the Amazon, Central Africa, and Indonesia) aside from pixels containing standing water. Areas with data below 
the quality control thresholds are shown in white. 
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here. And, as is the case with all spatial interpolation methods, the 
further away in space from an observation of Γ, the more wary one 
should be of the interpolated value. Because POBI is an exact interpo-
lator, which means observed values remain unchanged after interpola-
tion, there is the choice to only use the observed cells in one’s analysis if 
interpolated data are undesirable. 

2.2. Reflectivity model 

Thus far, research by the GNSS-R community has focused on two 
different pathways for producing inundation maps, both of which stem 

from previous microwave radar and radiometer inundation mapping 
algorithms: thresholding the data to produce binary ‘presence/absence’ 
inundation maps (à la active radar), or using a continuous model func-
tion to produce fractional inundation maps (à la radiometers). 

Here we use a continuous model function that relates observations of 
Γ to fractional inundation extent at the 3 km scale. Our continuous 
model function quantifies the relationship between Γ and fractional 
inundation extent, such that every observation of Γ can be used to infer 
inundation extent. The model (Chew and Small, 2020b) relates Γ to 
fractional inundation extent by assuming that the observed Γ is a 
weighted average of Γ coming from the inundated and un-inundated 

Box 1 
Inundation reflectivity model.
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surfaces, with the weights being equal to their respective grid cell 
fractions. A similar weighted average approach was also applied to data 
from microwave radiometers in (Colosio et al., 2022). Although the aim 
of this work is not to re-describe what was presented in (Chew and 
Small, 2020b), Box 1 illustrates the equations and ancillary variables 
required by the model. 

The relationship between Γ and fractional inundation depends on the 
characteristics of the reflecting surface. At a conceptual level, consider 
the case in which a topographically-rough desert is inundated. The Γ of 
the desert before the flood would be low while during the flood it would 
be high, leading to a large ΔΓ. Alternatively, one could imagine a case 
where a previously saturated agricultural field is inundated. In this case, 
the Γ of the saturated field would be relatively high even before it 
flooded. Thus, the ΔΓ would be smaller than in the case of the flooded 
desert. 

In these conceptual examples, two landscapes devoid of surface 
water transitioned to completely flooded landscapes. But there are many 
scenarios in which the landscape only partially floods. We use a model to 
retrieve fractional inundation extent in order to account for competing 
landscape characteristics on Γ like soil moisture, land surface roughness, 
and the roughness of the water. 

Fig. 4 illustrates the modeled effect of changing these three variables 
on the relationship between Γ and fractional inundation extent. When 
the un-inundated land surface is both dry and rougher than the water in 
the inundated grid cell fraction, the sensitivity of Γ to fractional inun-
dation in that grid cell is the largest (pink line in Fig. 4). In this case, soil 
moisture of the un-inundated land surface has a negligible effect on Γ, 
which is why the pink and yellow lines are nearly perfectly overlapped 
in Fig. 4. Conversely, a perfectly smooth and saturated soil will actually 
produce higher Γ than if that same surface were flooded with rough 
water (black line): reflectivity decreases as inundation fraction in-
creases. Smoother land surfaces, regardless of the roughness of water, 

require knowledge of soil moisture in order to understand how Γ varies 
with fractional inundation (e.g., the green vs. the black line in Fig. 4). 
This is why the roughness of the land and water surfaces as well as soil 
moisture must be estimated to retrieve inundation extent when using Γ. 
Later, we will show the differences in inundation retrievals that would 
result if these variables are ignored. 

Fig. 3. 3-km gridded observations of Γ along the Texas and Louisiana coastlines between Aug 21–23, 2017 before Hurricane Harvey (a) and on August 25–27, 2017 
after Hurricane Harvey (b). (c) and (d) are interpolated maps of Γ using the POBI method with (a) and (b), respectively. Black boxes indicate the region most affected 
by the flooding. 

Fig. 4. Examples of end-member scenarios in the model. Each model simula-
tion has a different combination of soil moisture, water roughness (σwater), and 
soil roughness (σsoil) parameters. All simulations were run assuming an inci-
dence angle of 25 degrees and a loamy soil texture—varying the soil texture 
produces negligible differences in the model output. 
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2.3. Model parameterization 

What (Chew and Small, 2020b) did not do, and what we must do 
here, is estimate or parameterize soil moisture, surface roughness, the 
roughness of the water, and include the attenuating effect of vegetation 
such that we can retrieve inundation extent from any CYGNSS obser-
vation. We allow soil moisture to be both spatially and temporally 
variable, but both soil surface roughness and the roughness of water are 
assumed to be spatially variable but temporally static. Fig. 5 shows 
simplified flowcharts of both the parameterization and retrieval pro-
cesses, the details of which are in the text below. Parameterization of the 
model and ultimate retrieval of inundation fraction requires ancillary 
datasets; although these are also described in the following text, we 
include a table in the Supplement summarizing the datasets as well 
(Table S1). 

Ancillary datasets that describe soil surface roughness and the 
roughness of water at the spatial scale of CYGNSS do not exist. Thus, we 
inverted our reflectivity model to find the best fit values of soil surface 
and water roughness using calibration data or observations, all from the 
year 2018. For the case studies described in Section 3, we use observa-
tions from outside the calibration time period. In order to simplify model 
inversion, we used a data cube approach for both soil and water 
roughness parameterization (Table S1). 

For the parameterization, we required a priori knowledge of where 
there might typically be surface water. To this end, we upscaled data 
from the Global Surface Water Explorer (GSWE) (Pekel et al., 2016), 
which is a 30-m global surface water dataset derived from Landsat data. 
We used GSWE data to quantify how many months out of the year (in 
2018 only) surface water was present in each pixel. We considered any 
30-m pixel with surface water presence >6 months out of the year to be 
semi-permanent water. We then calculated fractional inundation at the 
3 km (CYGNSS) scale using the binary, 30-m semi-permanent water 

mask. Because the GSWE is derived from optical data, it will underes-
timate the extent of semi-permanent water beneath vegetation canopies, 
which will affect our parameterization of water roughness in these 
pixels. 

We now describe the methodology we used to parameterize the 
model. The general retrieval framework described here is flexible, and in 
the future these ancillary data sources and parameterizations could 
change as new and improved data become available. 

2.3.1. Soil texture 
As shown in Box 1, soil texture is required by the model. However, 

the differences in the relationship between Γ and fractional inundation 
extent when we vary input soil texture are negligible. For all simulations 
and output we will show, we used a loamy soil texture as input. 

2.3.2. Vegetation 
There is also no mention of vegetation in the model of (Chew and 

Small, 2020b), However, both modeling (Ferrazzoli et al., 2011; Pier-
dicca et al., 2014) and empirical (Carreno-Luengo et al., 2020) studies 
indicate that vegetation affects Γ. Despite these studies, relationships 
between Γ and vegetation characteristics are still relatively poorly un-
derstood or difficult to quantify due to a dearth of adequate observa-
tional data. Here, we assume that vegetation has an attenuating effect on 
Γ but does not change its sensitivity to surface water. In other words, 
‘more’ vegetation will decrease Γ but not affect its relationship with 
fractional inundation extent (i.e., a curve in Fig. 4 retains its shape, but is 
shifted up or down). 

We use an empirical relationship between Γ and a static dataset of 
above ground biomass (AGB) (Avitabile et al., 2016) to estimate the 
attenuating effect of vegetation on Γ. The AGB dataset has a native 
resolution of 0.01 deg., so we first upscaled the data to 3 km. First, we 
removed grid cells with 1% open water or greater, as indicated by the 

Fig. 5. Flowcharts illustrating the parameterization and retrieval processes.  
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Global Surface Water Explorer dataset. Then, we binned the upscaled 
biomass data by 5 T/ha and calculated the mean and standard deviation 
of Γ for these bins. We then calculated the regression coefficients for the 
best fit line between AGB and mean Γ and used this relationship to 
‘correct’ Γ for the effect of AGB. The correction was performed by adding 
the expected reduction in Γ due to AGB to the observed value of Γ 
(Fig. 6). The adjusted Γ was then used in the retrieval of inundation 
fraction and in the calibration of the model parameters. The correction 
shown in Fig. 6 is a simple one and does not consider how factors like 
seasonally-varying vegetation water content or canopy structure affect 
Γ. In the future, as our understanding of vegetation’s effect on Γ im-
proves, we can update this correction as appropriate. 

2.3.3. Soil surface roughness 
The roughness of the land surface (σsoil), which here is defined as the 

root mean square (RMS) of the cm-level height deviations of the soil, is 
not well known. However, estimating the RMS surface height is 
important because rougher surfaces will lead to lower values of Γ for un- 
inundated and partially-inundated land surfaces, which will affect how 
Γ changes as the surface floods, thus altering the overall shape of the 
curves in Fig. 4. There are several possible approaches for quantifying 
RMS surface heights. LIDAR surveys, usually done from aircraft, can 
provide cm-level height information. However, these data are sparsely 
available so it is not currently possible to map roughness from LIDAR for 
the entirety of CYGNSS’ coverage. Although digital elevation models 
(DEMs) are widely available, these data are too coarse be used to 
quantify cm-level deviations. Other microwave missions like SMAP 
parameterize surface roughness based on land cover (O’Neill et al., 
2018), but we have observed significant differences in Γ even within one 
land cover class. Thus, characterizing surface roughness based on land 
cover class is not sufficient for the GNSS-R scattering geometry. 

Because of the above limitations, we parameterize soil surface 
roughness using collocated observations of Γ (observed and interpo-
lated) and SMAP soil moisture (Enhanced Level 3 product (O’Neill et al., 
2021)) from 2018, and then finding the modeled value of σsoil (Box 1) 
that best fits the observed relationship. The outcome of this exercise is a 
gridded 3 × 3 km static map of σsoil that varies spatially. We used the 9 
km gridded SMAP postings and downscaled them to 3 km by using the 
value in the closest 9 km grid cell to each 3 km cell. Only soil moisture 
retrievals that were less than the value of the soil porosity (Das and 

O’Neill, 2020; Hengl et al., 2017) for that grid cell were considered to 
remove SMAP retrievals that can be affected by intermittent surface 
water. An example of the matchups for a location in west Texas is shown 
by the purple dots in Fig. 7. This location was chosen at random from a 
subset of matchups that had a correlation between reflectivity and soil 
moisture >0.7. 

We compared these matchups to simulations from the model from 
Box 1 that were run assuming no surface water presence but with 
modeled σsoil that varied between 0 and 0.05 m (colored lines in Fig. 7). 
We found the model simulation that best fit the observed relationship 
between Γ and soil moisture and used the best fit value of σsoil for the 
static inputs of soil surface roughness in the inundation model. In Fig. 7, 
the black line shows the best fit model simulation for the observational 
matchups, which in this case is when σsoil = 0.028 m (RMSE = 1.7 dB). 

Although in general the model fits to the observations were good 
(peak of the distribution of RMSE for all grid cells = 1.15 dB), there were 
exceptions:  

1. Near rivers and lakes, where the SMAP soil moisture retrievals may 
be contaminated by surface water, the RMSE between the model and 
observations was more commonly >3 dB.  

2. Regions with AGB >100 T/ha also exhibited worse model fits, which 
is <15% of the CYGNSS-observed land areas.  

3. Areas with salt pans (although only a small fraction of the CYGNSS 
sensing area, < 0.27%) are known to produce erroneously high soil 
moisture retrievals and consequently resulted in poor model fits.  

4. Grid cells in the Middle East, particularly around Syria, exhibited 
poor model fits due to known radio frequency interference (RFI). 

For the above cases, with the exception of the cells likely affected by 
RFI, we did not use the best-fit modeled values of σsoil. Instead, we set 
cells with significant semi-permanent water and cells with a high AGB to 
have high soil roughness values. For cells with a high AGB, we calculated 
the mean Γ for this group (− 28.6 dB), which corresponds to a modeled 
soil roughness of 0.04 m, and so we set all cells with a high AGB to have a 
soil roughness of 0.04 m. For cells with significant semi-permanent 
water, it was not possible to use this same approach, as mean Γ for 
this group is likely significantly influenced by the open water. For the 
time being, we set these cells to also have a soil roughness value of 0.04 

Fig. 6. The relationship between above ground biomass (AGB) and Γ, when 
AGB is binned in intervals of 5 T/ha. The mean is shown by the dark gray line, 
and the standard deviation is shown by the error bars. The pink dashed line is 
the best fit line to this relationship, where Γ = − 0.007828 x AGB – 26.42. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 7. The observed relationship between Γ and soil moisture in 2018 for one 
3 km grid cell in Texas centered at 33.08 deg. N, 99.82 deg. W (purple dots). 
Colored lines are model simulations for this relationship with varying soil 
surface roughness. The black line is the best fit model simulation for the ob-
servations, σsoil = 0.028 m. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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m, with the caveat that a different value could be used in future studies. 
Finally, for cells located in salt pans, we once again calculated the mean 
Γ for the group (− 14 dB), which corresponded to a soil roughness value 
of 0.01 m. These categories are defined and values of σsoil described in 
Table 1. 

Finally, in cells with no data, we used nearest neighbor interpolation 
to produce a spatially-complete map of parameterized σsoil, which is 
shown in Fig. 8. Given the dearth of in situ soil roughness measurements, 
it is difficult to assess the global accuracy of the parameterizations, and 
our inability to separate soil surface roughness from large-scale topo-
graphic roughness conflates the two types of roughness in our parame-
terization. However, when we compared our value of σsoil to in situ soil 
roughness measurements taken during a CYGNSS mission field 
campaign in Alamosa, CO, our value of 0.027 m was similar to those 
obtained during the field campaign, which ranged from 0.007 to 0.0265 
m (Campbell et al., 2020). 

2.3.4. Water roughness 
Assigning a temporally static value of water roughness (σwater) for 

any one grid cell is tricky, particularly for grid cells where historically 
there is not typically water. Water roughness depends on wind speed and 
the size of the water body. Larger water bodies tend to be deeper than 
smaller water bodies, and deeper water can accommodate larger waves. 
Larger water bodies are also less likely to be sheltered by surrounding 
vegetation. This introduces a somewhat circular problem: we need to 
know σwater in order to retrieve surface water extent, but surface water 
extent in turn affects σwater. This is exemplified in Fig. S2, which shows 

our modeled values of σwater, which we obtained by inverting the model 
to solve for σwater given inputs of fractional inundation from the GSWE 
reference dataset, mean Γ and soil moisture for 2018, and parameterized 
surface roughness from Fig. 7. As surface water extent increases, so does 
σwater. In grid cells that do contain semi-permanent water, this exercise 
can be used to parameterize σwater, where σwater for any particular grid 
cell is the output of σwater inverted from the model (Fig. 9). 

However, because here we are focused on flooding (i.e., retrieving 
surface water extent during times and in places where water is not 
typically found), we had to make a choice of how to parameterize σwater 
in grid cells that are typically water-free (defined here as <0.02 semi- 
permanent water as indicated by the GWSE). In these cells (white 
areas in Fig. 9), we assigned water roughness to be 0.02 m, which was 
the median retrieved water roughness value for cells with semi- 
permanent water presence. 

The parameterized values of σwater in Fig. 9 ignore the fact that this 
parameter can vary significantly over time, particularly over large 
bodies of water, due to temporal variations in roughening from wind. 
Future work could involve assigning realistic ranges to this parameter 
instead of one using one value, which could then provide reasonable 
uncertainty bounds on retrieved inundation fraction due to uncertainties 
in σwater. 

2.3.5. Soil moisture 
Unlike the parameterization of σsoil and σwater, the soil moisture input 

for the inundation retrieval is allowed to vary through time. Including 
an estimate of the soil moisture of the un-inundated cell fraction is 

Table 1 
Assigned values of σsoil for categories of cells that exhibited poor model fits.  

Category Defined as Assigned σsoil 

Cells contaminated by water Cells with >0.02 semi-permanent water fraction in 2018, as indicated by the GSWE 0.04 m 
Cells with high AGB AGB > 100 T/ha 0.04 m 
Salt pans Cells falling within the boundaries of major salt pans (Patterson and Vaughn Kelso, 2022) 0.01 m  

Fig. 8. Parameterized values of soil surface roughness (σsoil).  

Fig. 9. Map of parameterized values of static water roughness σwater. Inland grid cells without significant water (<0.02 fractional coverage) in the calibration time 
period (cells in white) were set to have a σwater = 0.02 m. 

C. Chew et al.                                                                                                                                                                                                                                   



Remote Sensing of Environment 293 (2023) 113598

9

important because Γ is affected by soil moisture. Without consideration 
of soil moisture, the algorithm would mistake fluctuations in Γ caused by 
soil moisture variations as fluctuations in inundation. 

We use retrievals from the SMAP Level 3 Enhanced product for the 
soil moisture input (O’Neill et al., 2021). On any day X for a given grid 
cell, we use the most recent soil moisture retrieval, which can be from 
day X to day X-2, since the temporal repeat frequency of SMAP can be up 
to three days depending on latitude. We consider the soil porosity from 
the SMAP ancillary data (Das and O’Neill, 2020) in determining whether 
or not a soil moisture retrieval is above its saturated value and thus 
likely to be affected by transient water. If a soil moisture retrieval is 
higher than the value of its porosity, we set the soil moisture to be equal 
to the porosity, to represent the saturated soil moisture content. How-
ever, as we will show below, this threshold does not completely remove 
the effect of transient surface water on the soil moisture retrievals, and 
erroneously high soil moisture values tends to cause an underestimation 
of fractional inundation. 

3. Inundation maps and sources of uncertainty 

In this section, we compare CYGNSS-derived inundation maps to 
independent surface water maps from the Surface Water Microwave 
Product Series (SWAMPS) dataset, data from PALSAR-2 (Phased-Array 
L-band Synthetic Aperture Radar-2), flooding maps from the Dartmouth 
Flood Observatory (DFO), and the modified normalized difference water 
index (MNDWI) from MODIS, the Moderate Resolution Imaging Spec-
traradiometer. In some cases, we will show upscaled fractional inun-
dation from the GSWE to compare with the ‘before’ or ‘dry’ inundation 
maps, as often it was difficult or impossible to find any cloud-free images 
from MODIS for the regions. When we upscale binary classifiers at high 
spatial resolution from PALSAR-2, the DFO, or MODIS, in all cases we do 
so by calculating the fraction of high-resolution cells within each 3 km 
cell that are classified as water and report that value as the upscaled 
inundation fraction. 

First, we will describe the external surface water maps. Then, we will 
compare the maps with maps of inundation fraction derived from 
CYGNSS for several case studies, which were specifically chosen to 
highlight sources of uncertainty in the CYGNSS retrievals. 

3.1. Inundation dataset description and processing 

3.1.1. SWAMPS 
The Surface Water Microwave Product Series (SWAMPS) is a gridded 

dataset of inundation fraction that is derived from data from several 
different high frequency microwave sensors, such as SSM/I SSMIS, ERS, 
QuikSCAT, and ASCAT (Jensen and McDonald, 2019). SWAMPS is one 
of the longest microwave remote sensing datasets available for down-
load, and daily data files are available for the time period 2000–2020. 
The temporal repeat of the data is approximately 3 days, and the data 
are gridded to 25 km. 

3.1.2. PALSAR-2 
PALSAR-2 is an L-band monostatic radar onboard the ALOS-2 sat-

ellite, which was launched by the Japanese Space Agency in 2014. 
Although the data have a very high spatial resolution (25 m) and can 
penetrate denser vegetation than any other ancillary dataset we describe 
here, there are only a very limited amount of data that are publicly 
available. Here, we use PALSAR-2 data from an annual mosaic that have 
been radiometrically balanced and georectified for the year 2019 (JAXA, 
2022). 

We specifically use PALSAR-2 data to identify regions of open water 
and flooded forest in the Amazon, so we use HH polarization backscatter 
data in our analysis, as HH polarization has been shown to be more 
sensitive to double bounce scattering, which occurs in regions of dense, 
flooded vegetation (Rosenqvist et al., 2020). In order to create an 
analogous 3 km map of inundation fraction from the PALSAR-2 data, we 

first thresholded the data to identify pixels that were likely dry forest, 
open water, and flooded forest (see the Supplement for more details on 
the distribution of the data and thresholding). From this we created a 
binary classifier, where dry forest was considered one class and open 
water and flooded forest were grouped together as the other class. We 
then upscaled the binary, 25 m map to a 3 km map of inundation frac-
tion, which we could then directly compare to the CYGNSS data. 

3.1.3. Dartmouth flood observatory 
Flooding maps produced by the Dartmouth Flood Observatory are 

often an aggregation of multiple data sources, many of them optical. 
Here, we use maximum observed flooding produced by the DFO for 
Cyclone Idai in Malawi. For this event, the DFO map is primarily 
comprised of data produced by the Atmospheric Environmental 
Research, Inc. (AER), which used a downscaling algorithm on coarse- 
scale (22 km) microwave data to produce a 90 m spatial resolution 
map. The final map produced by the DFO also contained data from 
MODIS (data downloaded from https://floodobservatory.colorado.edu/ 
Events/4725/2019Malawi4725.html). 

3.1.4. MNDWI from MODIS 
Our MODIS surface water maps were derived by thresholding 

MNDWI from the MODIS/Terra Surface Reflectance Daily 500 m prod-
uct. MNDWI is calculated using a ratio between Bands 4 (Green) and 6 
(shortwave infrared) (Xu, 2006): 

MNDWI =
Band 4 − Band 6
Band 4 + Band 6

(S1) 

After we calculated MNDWI and georeferenced the scene, we 
removed cloud and cloud-adjacent cells using the cloud mask contained 
in the MODIS product. We then imposed a threshold such that MNDWI 
≥ 0 was set to be water, which is the standard threshold (Xu, 2006). 
After doing so, we were left with a 500 m binary map of surface water 
presence, which we upscaled to the 3 km gridding scheme of CYGNSS 
and determined fractional inundation. 

3.1.5. CYGNSS 
For all CYGNSS inundation maps, we used the parameterized values 

of soil surface and water roughness, concurrent soil moisture retrievals 
from SMAP, and interpolated reflectivity observations to retrieve frac-
tional inundation. We show both before and after flood inundation maps 
using CYGNSS data. In most figures, we overlay our data over shaded 
relief maps for context. 

3.2. Case studies 

We discuss four case studies to compare our inundation maps with 
datasets from other sensors and to highlight specific sources of uncer-
tainty in the retrievals. These example maps will give users of the 
fractional inundation product a better understanding of error sources 
and a greater context for its utility. Tables S3–6 summarize the statistical 
comparisons discussed for each of the case studies. In each case study, 
we focus on different specific sources of uncertainty. However, all 
sources of uncertainty discussed affect the retrieved inundation in each 
of the four examples to varying degrees. There are several broad cate-
gories of uncertainty that lead to differences between our inundation 
maps and ancillary data sources:  

1. Uncertainty in the reflectivity observation due to calibration errors, 
gridding, and spatial interpolation.  

2. Uncertainty due to inaccurate model parameterization and ancillary 
data.  

3. Uncertainty in the external inundation maps themselves. 
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3.2.1. The Amazon 
Our first case study compares maps of inundation fraction from 

CYGNSS to both the SWAMPS dataset and data from PALSAR-2. Here, 
we illustrate retrieved inundation extent in regions of flooded forests as 
well as open water. Fig. 10a shows CYGNSS inundation fraction for the 
month of May 2019, for a large region within the Amazon basin. The 
Amazon encompasses areas of dense tropical forest, open water, and 
flooded forest. 

In order to understand the performance of the algorithm in regions of 
flooded forest, we compared the CYGNSS maps in the Amazon to maps 
of inundation fraction from a PALSAR-2 tile (shown by the boxes in 
Fig. 10a), which we created by manually thresholding the HH back-
scatter data and then upscaling to 3 km (see Supplement for further 
details). Because the PALSAR-2 tile we chose is a mosaic of data sampled 
from April 30, May 9, and May 23, 2019, we chose to compare the 
PALSAR-2 data to the mean CYGNSS inundation map for the entire 
month of May of that year (Fig. 10a). 

Fig. 11a shows a zoomed in view of the mean CYGNSS inundation 
fraction for May 2019 for the extent of the PALSAR-2 tile (extent out-
lined by the black box in Fig. 10a). There are regions of high, medium, 
and low inundation extent in this image. Fig. 11b shows the corre-
sponding upscaled map of inundation fraction derived from PALSAR-2, 
and the difference between the CYGNSS and PALSAR-2 maps of inun-
dation fraction are shown in Fig. 11c. In this panel, red pixels are where 
PALSAR-2 indicated more surface water, and blue pixels are where 
CYGNSS indicated more surface water. The scatter plot in Fig. 11d shows 
the relationship between CYGNSS and PALSAR-2 inundation fraction for 
this tile. In general, both CYGNSS and PALSAR-2 retrieve very similar 
levels of inundation fraction, with a root mean square difference (RMSD) 
of 0.07 and an r2 of 0.91. However, we can also see from the best fit 
relationship between CYGNSS and PALSAR-2 (solid black line in 
Fig. 11d), that the CYGNSS algorithm does underestimate inundation 
fraction in pixels with high surface water extents, which tend to be in 
areas of open water, though not always. Our algorithm also tends to 
underestimate the inundation fraction in regions of flooded forest (re-
gions of high backscatter in Fig. S3a). Including a more advanced 
consideration for the attenuation of vegetation on reflectivity than we 
do here will be the subject of future research. 

We also compared the CYGNSS inundation fraction data in this 
location to inundation fraction in the SWAMPS dataset. Because the 
SWAMPS dataset contains daily retrievals on a 25 km grid (though the 
actual temporal repeat in any one location is between 3 and 5 days), we 
can compare time series of CYGNSS and SWAMPS. 

Fig. 12a shows time series of mean inundation fraction for the same 
region as the PALSAR-2 tile (black box in Fig. 10a) for SWAMPS (red 
dots) and CYGNSS (black dots) for 2018–2020. There is a noticeable bias 
between the two datasets, with the SWAMPS data showing approxi-
mately 0.04 higher inundation fraction than CYGNSS. The SWAMPS 
data are also higher than the mean value of inundation fraction from 
PALSAR-2 (blue dot in Fig. 12a). The bias might be due to the fact that 
the SWAMPS data, given their 25 km resolution, are not perfectly 
confined to the region of interest and will be influenced from water 
outside of the tile. When the bias is removed relative to the CYGNSS data 
(Fig. 12b), it is easier to see the similarities in seasonal variations in the 
datasets—both CYGNSS and SWAMPS show very similar timings of 
annual maximums and minima as well as amplitudes of seasonal 
changes and day-to-day scatter. A scatter plot of the CYGNSS and 
SWAMPS retrievals for the region are shown in Fig. 12c. Day-to-day 
scatter in CYGNSS retrievals is due to a combination of factors that we 
illustrate in this manuscript: temporal variations in water roughness, 
uncertainties in the Γ observations, and errors and uncertainties in the 
interpolation scheme. 

We can also upscale the CYGNSS inundation retrievals to illustrate 
how SWAMPS and CYGNSS compare regionally, which we show in 
Fig. 10b,c. Fig. 10b shows mean inundation fraction from SWAMPS for 
May 2019, and Fig. 10c shows the mean inundation fraction from 

CYGNSS, after upscaling the 3 km data to 25 km. There is broad spatial 
agreement between the two datasets. However, relative to SWAMPS, 
CYGNSS underestimates inundation fraction in grid cells with a large 
surface water extent, though the CYGNSS map also retrieves a larger 
amount of surface water in regions of low inundation extent, which is 
possibly related to the higher native spatial resolution of the CYGNSS 
data relative to SWAMPS. 

The underestimation of CYGNSS inundation fraction over regions 
with a large extent of open water could be indicative of the parame-
terized values of σwater being too low in this region, either generally or 
specifically for this time period, or it is possible that SWAMPS is over-
estimating inundation fraction. Although we did not incorporate 
temporally-varying values of σwater, further investigation into modeling 
their expected variations could be useful in providing better estimations 
of upper- and lower-bounds of retrieved inundation extent. In the 

Fig. 10. Mean inundation fraction for May 2019 over the Amazon Basin from 
CYGNSS (a) and SWAMPS (b). (c) is an upscaled version of (a), which has been 
gridded to the same resolution of SWAMPS. 
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current version of our data product, however, users should be cognizant 
of this expected underestimation with respect to SWAMPS. 

3.2.2. Mozambique, cyclone Idai 2019 
Cyclone Idai caused severe flooding along the coastline of 

Mozambique in March 2019. For this example, we do not display 
MODIS-based inundation from before the event, as cloud-free images 
were not available. This event was significant enough to activate flood 
inundation mapping from the DFO. DFO flood maps are typically 
derived from an aggregation of downscaled or high-resolution remote 
sensing data and observations and represent all retrieved inundation for 
the event (Brakenridge and Karnes, 1996). As such, comparison flood 
maps from the DFO do not characterize inundation for a particular time, 
but the maximum extent of flooding throughout the event. The CYGNSS 
inundation maps have a temporal resolution of three days. To compare 
with DFO, we aggregated the post-Cyclone Idai CYGNSS inundation map 
to represent the maximum extent of flooding that we retrieved over the 
time period. 

Relative to semi-permanent water extent in the area (Fig. 13a), the 
DFO mapped extensive flooding due to Cyclone Idai (Fig. 13b). CYGNSS 
inundation maps from before (Feb 25–27, 2019) and after (using an 
aggregation of data between March 11–26, 2019) Cyclone Idai are 
shown in Fig. 13 (c,d), which also show a significant increase in frac-
tional inundation. Many grid cells in Fig. 13d show complete inunda-
tion, and inundation extent increased along the Zambezi River relative 
to Fig. 13c. Semi-permanent water from the GSWE shows very similar 
fractional inundation for the reservoir and Zambezi River as the ‘before’ 
CYGNSS image (Fig. 13c). There are some differences along the coast-
line, with the CYGNSS inundation map showing greater inundation 
extent than the GSWE, though because the GSWE is from 2018, the two 
time periods do not overlap. 

Similar spatial patterns of maximum inundation extent exist between 
the DFO map (Fig. 13b) and that retrieved by CYGNSS (Fig. 13d). 
However, the DFO map shows higher fractional inundation values, and 
the inundation is more concentrated in specific areas. This is in contrast 
to the CYGNSS map, which shows increased moderate fractional 

Fig. 11. Mean inundation fraction for May 2019 from CYGNSS (a) and PALSAR-2 (b). The difference between the two are shown in (c), and their relationship on a 
pixel-by-pixel basis is shown (d). 

C. Chew et al.                                                                                                                                                                                                                                   



Remote Sensing of Environment 293 (2023) 113598

12

inundation in the two regions indicated by arrows in Fig. 13. This could 
be due to the fact that the DFO map was created in large part by 
downscaling a radiometer product through the use of a digital elevation 
model (DEM), which might tend to put more water in channels and low- 
lying areas. 

If the DFO map is used as truth, then the CYGNSS inundation map on 
average underestimates fractional inundation by 0.06, with an RMSD of 
0.16 (Table S4). We now discuss several possible reasons why our 
maximum inundation map from Cyclone Idai underestimates fractional 
inundation relative to the DFO map. 

3.2.2.1. Uncertainty in reflectivity observations. Uncertainties in the 
CYGNSS observations themselves introduce uncertainties into our maps 
of fractional inundation. We estimate the uncertainty in the Γ observa-
tions (neglecting uncertainty in the interpolation process) to be ±1.74 
dB (Supplement), a large fraction of which is likely due to the switch of 
many GPS satellites to ‘flex power mode’ in February 2020 (Wang et al., 
2019). This, along with other uncertainties stemming from the fact that 
CYGNSS data are not calibrated for land surface remote sensing, can 
cause both random noise and also entire CYGNSS tracks that are biased 
up or down relative to surrounding tracks. 

The uncertainty in Γ leads to uncertainty in the inundation retrievals, 
and because the relationship between Γ and fractional inundation is not 
linear (i.e., Fig. 4), this does not translate to a simple bulk character-
ization of uncertainty in the inundation retrievals. However, we can 
create upper- and lower-bounds on the inundation retrievals using our 
estimate of the uncertainty in Γ. Examples of lower- and upper-bounds of 

inundation base on the uncertainty in Γ alone are shown in Fig. 13e,f. 
These inundation maps were created using the same soil moisture re-
trievals and parameterizations of σsoil and σwater, but we varied the Γ by 
±1.74 dB to create upper- and lower-bounds of fractional inundation. As 
shown in Fig. 13e,f, the range of inundation that could result from this 
uncertainty is large and tends to be most significant in regions where 
inundation fraction is >0.5. This is due to the decreased sensitivity of 
reflectivity to changes in inundation fraction as inundation fraction (e. 
g., the flattening of the curves shown in Fig. 4 for high values of inun-
dation fraction). In these cases, even small uncertainties in Γ can lead to 
differences in retrieved inundation fraction that can be >0.3. Note that, 
for areas where inland water is expected to be more rough than the un- 
inundated land surface (i.e., black and green lines in Fig. 4), we expect to 
see the opposite relationship, with larger uncertainty bounds found for 
lower values of inundation fraction. However, in most areas, parame-
terized values of water roughness is less than land surface roughness. As 
the calibration of the CYGNSS data over land improves in the future, we 
expect the associated uncertainty to decrease. 

There is also a moderate amount of noise in the CYGNSS inundation 
maps in Fig. 13c,d that resembles speckle noise. The inundation maps 
have singular grid cells with very high retrieved inundation in moun-
tainous regions that are not present in the external inundation maps in 
Fig. 13 a,b. When we look at the Γ grids in Fig. 14a,b, we see that Γ is 
very low throughout most of these areas, but the landscape is dotted 
with high Γ. These high Γ values cause the anomalously high fractional 
inundation. These singular grid cells are located in regions of complex 
terrain, which tend to produce lower-quality reflections close to our 

Fig. 12. (a) Inundation fraction for the region outlined in the black box in Fig. 10a for SWAMPS (red dots), CYGNSS (black dots), and the mean value for May 2019 
for the PALSAR-2 tile (blue dot). (b). Same as (a), but with the SWAMPS data debiased relative to CYGNSS. (c) Scatter plot of the de-biased SWAMPS and CYGNSS 
retrieved values of inundation fraction shown in (b). Note that the axes are constrained in this panel. Constraining the axes removes a few outliers in the SWAMPS 
time series, which are due to the fact that, occasionally, the region of interest was only partially sampled by the sensors used in the SWAMPS retrievals. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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signal-to-noise ratio (SNR) threshold of 2 dB. Improving data quality 
controls in the future could help reduce the amount of these anomalous 
grid cells. It is also possible that coarsening the grid cell size or using a 
longer time-averaging window than three days could also mitigate this 
issue. However, because our goal is to map inundation at relatively high 
spatiotemporal resolution, our resulting maps will contain more noise 
than monthly or seasonal maps. 

3.2.2.2. Uncertainties in model parameters and ancillary data. Problems 
with soil moisture data for the un-inundated grid cell fraction introduce 
another source of uncertainty. SMAP soil moisture retrievals, and any 
satellite soil moisture retrieval, are themselves affected by surface water, 
with surface water presence introducing a high bias into the retrieved 
soil moisture value. Although we try to mitigate this effect by setting any 
soil moisture retrieval higher than the soil’s porosity to be equal to the 
porosity, this will remain an issue. A high bias in the soil moisture 
retrieval could be one of the factors in the underestimation of fractional 

inundation after Cyclone Idai, relative to the DFO. Fig. 14 shows all of 
the data or parameters required for the model retrieval for the CYGNSS 
inundation maps in Fig. 10. SMAP retrieved soil moisture >0.5 cm3 

cm− 3 for the majority of the coastline after Cyclone Idai (Fig. 14d), 
indicating that the retrievals were very likely biased by the presence of 
surface inundation. This bias can extend beyond just the grid cell 
affected by flooding, as the spatial resolution of the SMAP retrievals is 
>30 × 30 km, despite their posting to 9 km. Using too high of a soil 
moisture value in the model yields an underestimate of the fractional 
inundation for the grid cell, though quantifying these uncertainties is 
difficult, given that they will depend on the parameterizations of water 
and soil roughness (Fig. 4). However, if we were to ignore the effect of 
soil moisture on Γ, we would very often overestimate fractional inun-
dation in regions not experiencing flooding and introduce false alarms 
into our inundation maps. We thus believe it is important to include soil 
moisture as an ancillary input to our inundation maps despite it leading 
to an underestimation of fractional inundation during a flooding event. 

Fig. 13. (a) Reference semi-permanent water map 
from the GSWE. (b) Maximum flood extent mapped 
by the DFO. (c) CYGNSS inundation map before 
Cyclone Idai. (d) Maximum inundation mapped by 
CYGNSS after Cyclone Idai. (e) Lower-bound of 
maximum inundation fraction for CYGNSS, assuming 
uncertainty in reflectivity observations. (f) Upper- 
bound of maximum inundation fraction for CYGNSS, 
assuming uncertainty in reflectivity observations. (g) 
Maximum inundation fraction for CYGNSS if soil 
surface roughness were assumed to be 0.05 m and 
water roughness assumed to be 0 m.   
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The parameterization of σsoil reasonably fits the observed relation-
ship between CYGNSS and SMAP. In contrast, one of the largest known 
unknowns is our parameterization of σwater. Changing σwater for a fully 
inundated surface from 0 to 0.04 m changes Γ by nearly 30 dB, which is 
almost the full range of observed values. Because there are no validation 
sources for σwater, this is an uncertainty that users will have to contend 
with, and if the surface water is rougher than its parameterization value, 
CYGNSS will under-retrieve fractional inundation. 

Given the uncertainty in soil moisture information and parameteri-
zation of σsoil and considerable unknowns in σwater, it is natural to 
wonder if including these parameters at all is worthwhile. Many mi-
crowave remote sensing retrieval algorithms for surface water mapping 
ignore the influence of soil moisture, and many other GNSS-R studies 
have assumed that the land surface is extremely rough and the inland 
water surface is perfectly smooth. Fig. 13g illustrates what would 
happen if we did not parameterize our model for these confounding 
factors. This figure shows maximum fractional inundation for Cyclone 
Idai if we assumed the soil surface to be rough (σsoil = 0.05 m, at this 
value the soil moisture influence is negligible) and the water surface to 
be perfectly smooth (σwater = 0 cm). Fractional inundation is vastly 
underestimated relative to inundation mapped by the DFO (Fig. 13b), 
with an RMSD of 0.2, which is for the most part caused by the 
assumption of a perfectly smooth water surface. Clearly, the inundation 
map produced by spatially-varying these parameters (Fig. 13d) is a 
significant improvement. 

3.2.3. Mali, seasonal flooding 2020 
Our third example is from the Inland Delta in Mali along the Niger 

River, which floods seasonally. False color images from MODIS from the 
dry and wet seasons are shown in Figs. 15a and b, respectively. A 
CYGNSS inundation map from the dry season (Fig. 15c) shows the Niger 
River as well as several small water features that dot the landscape. 
Visually, there is a good correspondence between the CYGNSS inunda-
tion map and the MODIS false color image from the dry season (Figs. 15a 
and c). The wet season CYGNSS inundation map from October 27–29, 
2020 (Fig. 15d) shows higher fractional inundation than in April, 
notably in the Inland Delta. This same pattern is seen in the MODIS false 
color image in Fig. 15b. The October MODIS image also indicates there 
was a significant increase in active vegetation, in addition to the 
increased surface water. 

Uncertainty in external inundation maps: Fig. 15 also shows SWAMPS 
inundation fraction maps in the same region for early April (e) and late 
October (f), 2020. In order to more easily compare the SWAMPS and 
CYGNSS inundation maps, we again upscaled our CYGNSS inundation 
retrievals to the same 25 km grid used by SWAMPS. The upscaled 
CYGNSS maps for April and October are shown in Fig. 15g and h, 
respectively. In this case, there are significant differences between the 
SWAMPS and CYGNSS maps. SWAMPS shows higher inundation frac-
tion outside the Inland Delta in both April and October and lower 
inundation fraction within the Inland Delta in October. Given that the 
optical MODIS image does not show significant water outside of the 
Inland Delta, particularly in April, we believe that the CYGNSS retrievals 

Fig. 14. Ancillary information required for the inundation retrieval from before (Feb 25–27, 2019, 1st column) and after (March 11–26, 2019, 2nd column) Cyclone 
Idai along the coast of Mozambique. Both soil roughness and water roughness are the same for before and after the event. 
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may better represent the inundation extent in this particular case, and 
microwave radiometer retrievals of inundation fraction like SWAMPS 
are known to have issues in the Sahel. This example, along with the 
example over the Amazon, highlights the complementary nature of 
different sources of inundation information. Future work combining 
information from both CYGNSS and SWAMPS could take advantage of 
the relative merits of each dataset. 

3.2.4. Australia, flooding 2019 
Our fourth example comes from a region in Australia, which expe-

rienced significant flooding throughout Feb – Apr, 2019. Fig. 16a shows 
a CYGNSS fractional inundation map from before the flooding event 
(Jan 7–9, 2019). A comparison inundation map derived from MODIS is 
shown in Fig. 16c. Neither map shows significant inundation, and the 
RMSD between the two maps is 0.02. 

Fig. 16b shows a CYGNSS inundation map from Apr 9–11, 2019, a 
time period during which the region was experiencing significant 
flooding. There are four distinct regions with increased inundation 

relative to the inundation map from January. When we compare this 
map to a MODIS inundation map recorded for the same time period, we 
also see these four distinct flooded regions. However, fractional inun-
dation is significantly less from CYGNSS than from MODIS, with an 
RMSD of 0.19. If only grid cells showing inundation in the CYGNSS map 
are considered, RMSD increases to 0.29. 

Uncertainties in the spatial interpolation: Errors in spatial interpolation 
introduce error into the gridded Γ data and resulting inundation maps. 
This appears to be one of the driving factors behind the underestimation 
of fractional inundation in Fig. 16b. Fig. 17a shows the observed Γ grid 
that was spatially interpolated to create the complete Γ grid in Fig. 16b. 
Superimposed on the grids are three black ellipses, which we can track 
from the observed grid (Fig. 17a), to the interpolated grid (Fig. 17b), to 
the resulting inundation grid in Fig. 16b. The observed tracks within 
these ellipses show very high Γ > -10 dB, and it is these cells that are 
producing the fractional inundation estimates of 1.0 that agree with the 
MODIS map in Fig. 16. Conversely, the interpolated cells over the 
flooded areas are closer to ~ − 15 dB (blue cells in Fig. 17b), which 

Fig. 15. (a) MODIS false color image recorded on Apr 
6, 2020. The red box in the inset indicates the region 
represented by the maps. (b) MODIS false color image 
recorded on Oct 29, 2020. (c) CYGNSS inundation 
map derived from interpolated reflectivity observa-
tions recorded between Apr 4–6, 2020. (d) Same as 
(c), except using data between Oct 27–29, 2020. (e) 
Inundation map from SWAMPS (mean of retrievals 
Apr 2–6, 2020. (f) Same as (e), except for Oct 26 – Oct 
29, 2020. (g) Same as (c), except upscaled to the same 
resolution of SWAMPS. (h) Same as (d), except 
upscaled to the same resolution of SWAMPS. (For 
interpretation of the references to color in this figure 
legend, the reader is referred to the web version of 
this article.)   
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results in lower fractional inundation for these cells. If only observed 
cells were used to calculate the error between the CYGNSS inundation 
map and that from MODIS, then the RMSD would decrease from 0.19 to 
0.12. It is clear that in this case, the POBI method did not perform 

optimally, and future work is needed to adapt the method for these 
extreme events. 

4. Conclusion 

This paper presented a retrieval algorithm for fractional inundation 
mapping using CYGNSS data as input to a parameterized reflectivity 
model. These maps are available at 3 × 3 km resolution with a temporal 
resolution of three days for the entirety of CYGNSS’ coverage (±38 deg. 
latitude). The CYGNSS inundation retrievals show similar seasonal 
changes in inundation extent over the Amazon as external inundation 
maps, and CYGNSS may outperform these maps in some regions. How-
ever, there are also several sources of uncertainty in the retrievals, two 
of which (parameterizations of soil moisture and water surface rough-
ness) will tend to cause an underestimation of fractional inundation 
relative to other surface water products, particularly in regions with 
high surface water extent. Future work will focus on improving the 
parameterizations used in the model as well as adapting the spatial 
interpolation method to perform better during extreme events. Updating 
the input CYGNSS data to a newer version that accounts for temporally- 
varying GPS transmit power is also a high priority. 

Fig. 16. (a) CYGNSS inundation map created using interpolated data recorded between Jan 7–9, 2019. (b) Same as (a), except for Apr 9–11, 2019. (c) MODIS 
inundation map for Jan 9, 2019. Pixels masked by clouds are shown in gray. (d) Same as (c), except for Apr 11, 2019. Black ellipses in (b) show three examples of 
non-interpolated tracks discussed in Fig. 17. 

Fig. 17. (a) Observed reflectivity grid for Apr 9–11, 2019. Black ellipses show 
three sections of non-interpolated tracks discussed in the text. (b) Spatially- 
interpolated version of (a), which was used to derive results in Fig. 12b. 
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