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Abstract Lidar-measured snow depth and model-estimated snow density can be combined to map
snow water equivalent (SWE). This approach has the potential to transform research and operations in
snow-dominated regions, but sources of uncertainty need quantification. We compared relative uncertainty
contributions from lidar depth measurement and density modeling to SWE estimation, utilizing lidar data
from the Tuolumne Basin (California). We found a density uncertainty of 0.048 g cm�3 by comparing output
from four models. For typical lidar depth uncertainty (8 cm), density estimation was the dominant source
of SWE uncertainty when snow exceeded 60 cm depth, representing >70% of snow cover and 90% of SWE
volume throughout the basin in both 2014 and 2016. Density uncertainty accounts for 75% of the SWE
uncertainty for a broader range of snowpack characteristics, as measured at SNOTEL stations throughout the
western U.S. Reducing density uncertainty is essential for improved SWE mapping with lidar.

1. Introduction

In many catchments worldwide, seasonal snowpack is an important determinant of the timing and magni-
tude of water availability for human use and natural ecosystems. A key variable is the spatial distribution
of snow water equivalent (SWE, the amount of water in the snowpack), but there is a historical lack of SWE
data [Bales et al., 2006]. The high spatial variability of snowpack makes extrapolation of available SWE data
problematic [Clark et al., 2011; Rice et al., 2011]. Satellite remote sensing does not provide direct measure-
ments of SWE in all settings [Nolin, 2010; Dozier, 2011]. Hence, advances in snowpack monitoring are needed
to refine understanding of SWE distributions for research and watershed operations [Bales et al., 2006; Viviroli
et al., 2011].

A path for quantifying SWE variations across large basins is through measuring snow depth with airborne
lidar and estimating bulk snowpack density with models (e.g., NASA Jet Propulsion Laboratory Airborne
Snow Observatory (ASO) [Painter et al., 2016]). Airborne lidar can measure submeter variations in depth, with
typical vertical uncertainties reported in the 2 to 30 cm range [DeBeer and Pomeroy, 2010; Grünewald et al.,
2010; Deems et al., 2013; Harpold et al., 2014; Grünewald and Lehning, 2015; Painter et al., 2016]. Lidar snow
depth uncertainty varies with factors such as vegetation, topography, flight characteristics, sensor specifica-
tions, and horizontal resolution of the gridded snow depth [Deems et al., 2013]. Generally, snow depth
uncertainty decreases as lidar data are aggregated to coarser scales. Other depth measurement approaches
[Kinar and Pomeroy, 2015; Sturm, 2015] are available at equivalent or lower uncertainty and are appropriate at
different spatiotemporal scales (see Text S1 and Figure S1 in the supporting information) [Larson et al., 2009;
Varhola et al., 2010; Kerkez et al., 2012; Parajka et al., 2012; Pohl et al., 2014; Vander Jagt et al., 2015; Buhler et al.,
2016]. These generally are unable to match the capacity of lidar to map snow depth in space.

In contrast to this technological revolution in snow depth measurement, there has been no concurrent
advance in the measurement of snowpack bulk density across space. Snow pit profiles remain the most reli-
able measurement of bulk density [Kinar and Pomeroy, 2015], but measurements can differ by 10% [Conger
and McClung, 2009; Proksch et al., 2016]. For a 100 cm snowpack with 0.30 g cm�3 density, this translates
to uncertainties of 0.03 g cm�3 in density and 10 cm in SWE. Although snow depth varies more spatially than
density [Balk and Elder, 2000; López-Moreno et al., 2013;Wetlaufer et al., 2016], density measurement in snow
pits is disproportionately limited in space relative to depth measurement. Intensive field campaigns can sam-
ple density at less than 102 snow pits per day [Elder et al., 2009], whereas airborne lidar systems can sample
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snow depth at 105 points per second [Deems et al., 2013]. Ground-penetrating radars (GPR) [e.g.,Marshall and
Koh, 2008] can increase spatial sampling of density, but are not reliable in all conditions [Lundberg et al., 2016].
Furthermore, GPR remains a specialized research tool and yields data that are time and labor intensive
to postprocess.

A solution is to model snow density across the domain of the snow depth data set [e.g., Painter et al., 2016].
Statistical [Elder et al., 1998; Wetlaufer et al., 2016], empirical [Jonas et al., 2009; Sturm et al., 2010; Bormann
et al., 2014; McCreight and Small, 2014], and physically based models [Jordan, 1991; Feng et al., 2008; Shi
et al., 2009; Painter et al., 2016] have been developed and evaluated against observations (see Text S2 for
review). While uncertainty depends on the model, location, evaluation period, and metric, density model
uncertainty is generally in the 0.04 to 0.10 g cm�3 range for root-mean-square differences (RMSD) and the
0.02 to 0.08 g cm�3 range for mean absolute differences (MAD). For context, continental snowpack density
typically starts near 0.15 g cm�3 early in the season and increases to values exceeding 0.35 g cm�3 during
snowmelt. The ~10% uncertainty in manual density measurements implies that minimum uncertainties in
modeled density must be 0.025 g cm�3 or greater. Hence, uncertainty in density measurements imposes a
fundamental challenge on improving snow density models.

Quantifying and minimizing the uncertainty of SWE estimated from snow depth and density requires identi-
fying the dominant sources of uncertainty. To date, there has been little attention to the relative uncertainty
contributions of depth and density. Given that density measurements are limited in number and tend to be
biased toward easily accessible locations (e.g., flat forest clearings), the full range of conditions are not usually
sampled. Hence, density models are difficult to test everywhere in a basin. A more spatially comprehensive
approach to characterize uncertainty in density is to examine variations across multiple models, a common
approach in climate and hydrology studies [e.g., Rodell et al., 2011]. This approach is appropriate for SWE esti-
mation from lidar snow depth, as any application of this approach requires selection of a density model (and
associated parameters) with limited evaluation data to guide those decisions.

Here we compare uncertainty in lidar snow depth measurement to that from modeled snow density for SWE
estimation across basins. We analyze airborne lidar snow depth data from ASO near-peak conditions during
two years (2014 and 2016) over the Tuolumne River Basin (California). We consider a range of uncertainties in
lidar measurement based on the literature. For tractability, we focus on density model selection rather than
uncertainty due tometeorological data [Raleigh et al., 2015, 2016] or model parameters [Reba et al., 2014]. The
analysis is relevant to current efforts to map SWE with lidar, including the ASO campaign and the NASA
SnowEx experiment.

2. Methodology
2.1. Snowpack Data Sets

We used airborne lidar snow depth and elevation data from ASO [Painter et al., 2016] over the Tuolumne River
Basin (California), gridded to a horizontal resolution of 50 m (Figure S2). The stated uncertainty of the 50 m
snow depth data is RMSD < 2 cm, which is at the bottom of the range in reported lidar depth uncertainty.
The drainage basin has an area of 1180 km2 and varies in elevation from 1080 m to 3940 m and has been
described previously [e.g., Rice et al., 2011; Lundquist et al., 2016].

We examined two ASO data sets for the Tuolumne Basin: 7 April 2014 and 16 April 2016. We selected early
April for our analyses because this is near the typical peak in snow accumulation. After filtering out thin snow
cover (<5 cm depth), the mean snow depth across the basin was 94 cm on 7 April 2014 and 117 cm on 16
April 2016. In both cases, approximately 80% of the basin had snow deeper than 10 cm. The snow volume
during the 2013–2014 winter ranked second lowest in the 30 year period from 1985 to 2015 [Margulis
et al., 2016], while the 2015–2016 snowpack was near average (i.e., ~10% below average).

As a measure of snowpack conditions near the 2014 ASO acquisition date, we examined snow density
and SWE measured with a federal sampler at seven snow courses across the basin by the California
Department of Water Resources (CDWR). The snow courses ranged in elevation from 2042 to 2987 m and
were generally flat meadows. Snow course data were taken 1.5 to 2 weeks before the 7 April ASO flight.
The CDWR snow course data were not appropriate for density model evaluation—approximately 50 to
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150 mm (water equivalent) of new snow fell in the final week of March, followed by compaction and melt.
However, these data offered a glimpse of density variations in the basin.

To place the 2 year ASO analysis in the context of a broader range of snowpack conditions, we also examined
snow depth and density near-peak accumulation from NRCS SNOTEL data [Serreze et al., 1999]. We screened
SNOTEL sites with valid SWE and depth data, resulting in 811 sites and n = 9013 station years. For each sample
with valid data, we first found peak SWE and then divided that value by depth to estimate bulk snowpack
density. We excluded cases with depth less than 20 cm at peak SWE.

2.2. Snow Density Models and Uncertainty

Estimating SWE from lidar requires selecting a density model. Every model will yield different density esti-
mates, and thus, model selection introduces uncertainty to the final SWE estimates. To gauge snow den-
sity uncertainty due to model selection, we applied two empirical models and two physically based
models to simulate spatial variations in density across the basin on the analysis dates. We randomly
selected 1000 analysis points in the basin where ASO snow depth was greater than 5 cm and ran all four
models at each of these points. These analysis points reasonably represented snow depth across the
basin (Figure S2).

We selected the empirical models of Sturm et al. [2010] and Jonas et al. [2009]. Both models require snow
depth (taken from ASO lidar data) and day of year. Additionally, the Sturm model requires seasonal snow cli-
mate classification, which was taken from the Sturm et al. [1995] map at 0.5° resolution. We classified 83% of
the 1000 analysis points in the maritime class and 17% in the alpine class. The Jonas model applies different
parameters depending on elevation zone. Because over 99% of the 1000 points were in the Jonas high-
elevation zone, we simplified the model by classifying all analysis points as high elevation.

For physically based models, we selected Snobal [Marks and Dozier, 1992; Marks et al., 1992, 1999] and
SHAW [Flerchinger and Saxton, 1989a, 1989b]. We selected Snobal for consistency with ASO model selec-
tion [Painter et al., 2016]. We selected SHAW to include a more detailed multilayer snow model of compac-
tion and densification, in contrast to the two-layer Snobal model. Whereas Snobal uses empirical density-
time curves to represent snow densification with compaction and snowmelt [Sandells et al., 2012], SHAW
utilizes physically based parameterizations similar to Anderson [1976]. The models also represent new
snowfall density differently: Snobal indexes a look-up table based on dewpoint temperature, while
SHAW uses an empirical relationship with wetbulb temperature. We used standard IPW routines for com-
puting albedo and net shortwave radiation as input into Snobal, while SHAW simulated albedo within the
model. Although SHAW is more complex, model complexity does not guarantee improved representation
of bulk snowpack properties.

Both Snobal and SHAW were run at an hourly time step with the same meteorological forcing data at each
of the 1000 study points. To ensure identical forcing between models at each point, we disabled the
canopy in SHAW and hence vegetation had no influence on model forcing or outputs. Forcing data origi-
nated from the 1/8° gridded NLDAS-2 data set [Xia et al., 2012], which we downscaled to the 50 m ASO
grid using the forcing preprocessor of the Alpine3D system [Lehning et al., 2006; Bavay and Egger, 2014]
to account for fine-scale topographic influences and gradients (see Text S4 and Figures S3 and S4). By sup-
plying Snobal and SHAW with the same forcing, the differences in density were due to differences in snow
model physics and parameters. An auxiliary analysis found that a simplified downscaling of meteorological
forcing (i.e., based on lapse rates from PRISM [Daly et al., 1994]) had a negligible effect (<0.01 g cm�3) on
density differences between models (see Text S4 and Figure S5).

2.3. SWE Uncertainty: Measures and Maps

At each study point, we calculated the “best estimate” of SWE and associated uncertainty (ΔSWE) as

SWE ± ΔSWE (1)

where SWE is the product of the lidar-measured snow depth (Hs) and a multimodel mean estimate of den-
sity (ρmean)

SWE ¼ Hs � ρmean (2)
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We use delta (Δ) to denote uncertainty of a variable. ΔSWE was calculated in quadrature (i.e., assuming
independent errors) based on fractional uncertainties in lidar snow depth and modeled density:

ΔSWE ¼ SWE �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔHs

Hs

� �2

þ Δρ
ρmean

� �2
s

(3)

From (3), we calculated the relative (i.e., percent) contribution of snow depth (fH) and density (fρ) uncertainties
to SWE uncertainty at each point. For the physically based models, we utilized lidar-measured snow depth to
estimate SWE (equation (2)) and ΔSWE (equation (3)), not the modeled snow depth.

Different metrics of uncertainty (Δ) are used in the literature for both snow depth and density. We used RMSD
because it is a commonly reportedmetric for both parameters. Quantification of lidar snow depth uncertainty
(ΔHs) is still an active area of research and thus we considered uncertainty ranging from 2 to 30 cm. Within
this range, we highlighted RMSD values reported in five specific studies, including (i) 2 cm [Painter et al.,
2016], (ii) 5 cm [Grünewald et al., 2010], (iii) 8 cm [Painter et al., 2016], (iv) 17 cm [DeBeer and Pomeroy,
2010], and (v) 23 cm [Harpold et al., 2014]: the smaller uncertainties are at grid resolutions of 101 to 102 m
and larger uncertainties are at the meter scale. The analysis focused on the median depth uncertainty (8 cm)
in this range. We applied snow depth uncertainty uniformly to all points, regardless of snow depth or geophy-
sical characteristics (e.g., elevation and vegetation). For snow density uncertainty (Δρ), we examined RMSD
across all four models, an approach similar to Rodell et al. [2011]. In each case, we treated the mean across
all four models as the best estimate of density (ρmean), similar to studies that examined density measurement
uncertainty [Conger and McClung, 2009; Proksch et al., 2016].

3. Results
3.1. Spatial Estimates of Snow Density and SWE

We focused on the dry, low-snowpack of 2014, as this represented a lower bound on the effects of
density uncertainty on SWE estimation (described below). The four density models yielded contrasting
distributions of snowpack density across the basin (Figure 1). The two physically based models produced
lower mean density (Snobal = 0.267 g cm�3, SHAW = 0.298 g cm�3) but higher standard deviations in space
(0.041 g cm�3 for Snobal and 0.033 g cm�3 for SHAW). SHAW density was greater than Snobal in part
because SHAW had more snowmelt by early April 2014. In contrast, the empirical models had higher
mean density (Jonas model = 0.339 g cm�3, Sturm model = 0.381 g cm�3) and lower standard deviation
in space (0.005 g cm�3 for Jonas and 0.012 g cm�3 for Sturm). Because the empirical models were devel-
oped for regional applications, they did not explicitly represent processes that influence density at local
scales (e.g., radiation variations with slope). Across all models and analysis points, the mean density was
0.321 g cm�3 and the mean uncertainty across density models (Δρ) was 0.048 g cm�3 in terms of RMSD
(0.041 g cm�3 for MAD). The same level of density uncertainty (0.048 g cm�3) was found in the near-average
snowpack of 2016 (Text S5 and Figure S6).

The CDWR snow courses from late March 2014 showed density varying from 0.292 g cm�3 to 0.417 g cm�3

(Figure 1c), with a mean of 0.351 g cm�3 and a standard deviation of 0.043 g cm�3. The empirical models
captured the mean CDWR density better while the physically based models captured the CDWR spatial varia-
bility better. Given limitations in the CDWR data (e.g., small sample size and differences in acquisition date),
these comparisons were only qualitative.

We applied the mean multimodel density and lidar snow depth at each point to estimate SWE magnitude
(Figure 1d and equation (2)) and uncertainty (Figure 1e and equation (3)). In this analysis, we assumed a
lidar depth uncertainty of 8 cm. Other magnitudes of depth uncertainty are discussed below and in the
supporting information (Text S6 and Figures S7 and S8). Mean basin-wide SWE was 30.3 ± 5.6 cm
(18.5% relative SWE uncertainty) in 2014. Not surprisingly, the spatial and statistical distributions of SWE
were similar to that of snow depth (compare Figure S2 and Figure 1). SWE uncertainty (Figure 1e) exhib-
ited a similar spatial pattern as the magnitude of SWE (Figure 1d), and most locations (86% in 2014, 74% in
2016) had relative SWE uncertainty between 10 and 30%.
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3.2. Relative Contributions to SWE Uncertainty

Absolute SWE uncertainty was greater at locations with deeper snow (gray points in Figure 2a). The frac-
tion of ΔSWE due to Δρ was also greater at locations with deeper snow (red points in Figure 2a), and thus
the contribution of ΔHs to ΔSWE diminished with increasing depth (blue points). Figure 2a shows a specific
case with ΔHs = 8 cm at all points and Δρ characterized by the spread of the four models at each point
(Figure 1b). We found a crossover point at a snow depth of 60 cm above which Δρ (0.048 g cm�3 on
average) dominated ΔSWE and below which ΔHs (8 cm) dominated. Seventy percent of the analysis
points in the 2014 analysis and 80% in the 2016 had snow depths exceeding 60 cm and were hence

Figure 1. (a) Multimodel mean snowpack density, (b) density model uncertainty, and (c) smoothed histograms for density models on 7 April 2014 at all analysis
points (n = 1000) over the Tuolumne River basin. Combining modeled density with lidar snow depth results in maps of (d) mean SWE and (e) SWE uncertainty.
(f) A SWE histogram is shown. Both Figures 1c and 1f display CDWR snow course observations (vertical lines) taken at seven locations in the basin over 25–28 March
2014. The histograms bin sizes are 0.01 g cm�3 for density (Figure 1c) and 1 cm for SWE (Figure 1f).
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in the zone where Δρ was dominant. Because the role of Δρ was greater in deeper snowpacks that also
store more water (Figure 2a), Δρ was the most important determinant of uncertainty in SWE volume for
the basin. For these density and depth uncertainties, density was the dominant source of uncertainty for
90% of the SWE volume basin-wide (Figure 2c). The results were replicated in the 2016 analysis (no
figures shown).

Across a wider range of uncertainties in snow depth and density, the crossover point where fρ > fH shifted to
lower snow depths with decreasing ΔHs or increasing Δρ (Figure 2b). This corresponded to changes in the
percent of basin SWE volume where Δρ dominated (Figure 2c). For example, ΔHs = 17 cm had a crossover
point of 125 cm snow depth (Figure 2b). Approximately 25% of the basin in 2014 (38% in 2016) had snow
depth exceeding 125 cm, and this zone comprised 50% of the SWE volume (both years) in the basin
(Figure 2c). If ΔHs was reduced to 5 cm (e.g., through spatial aggregation), the crossover point reduced to
35 cm snow depth (Figure 2b). About 72% of the basin snowpack was deeper than 35 cm in both years,
and this comprised >95% of the basin SWE volume in both years (Figure 2c). As accuracy in snow depth
improved, density uncertainty increased in importance.

3.3. Generalization Over a Range of Snowpack Conditions

We compared the relative contributions of ΔHs and Δρ to ΔSWE across a broader range of snowpack condi-
tions and uncertainty levels (Figures 3, S7, and S8). In Figure 3, the red region denotes conditions where
fρ > fH, the blue region denotes conditions where fρ < fH, and the dashed line is the crossover point (see
Figure 2). The gray contours show absolute ΔSWE (cm). Generally, there was a greater range of possible con-
ditions where Δρ dominated over ΔHs (compare red versus blue areas). In terms of absolute uncertainty,

Figure 2. (a) ASO snow depth (Hs) versus uncertainty in estimated SWE (ΔSWE) on 7 April 2014 in the Tuolumne Basin, with
relative contributions of uncertainties in modeled density (fρ, red line and markers) and lidar snow depth (fH, blue line and
markers) to ΔSWE. ΔSWE and contributions to ΔSWE are calculated in Figure 2a assuming ΔHs = 8 cm and Δρ as the
uncertainty among four models (0.048 g cm�3 on average). (b) Crossover snow depth above which fρ contributes more
than fH to SWE uncertainty versus different uncertainty levels in snow depth (x axis) and density (lines, units = g cm�3).
(c) Percentage of SWE volume contained by areas where fρ > fH for different uncertainty levels in snow depth (x axis) and
density (lines). In Figures 2b and 2c, the bold line shows the density uncertainty in this study (0.048 g cm�3). Five levels of
snow depth uncertainty from the literature are traced (see section 2.3).
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ΔSWE was greatest for snowpack
with higher depth and density
(Figure 3). ΔSWE and the relative
zones of dominant uncertainty
changed with different levels of
ΔHs and Δρ (see Figures S7 and S8).

The competing contributions to
ΔSWE were compared for the
typical depth and density condi-
tions found at peak SWE in the
SNOTEL network (Figure 3). The
vast majority of observations
from times of peak SWE fell in the
zone where Δρ dominated ΔSWE.
Approximately 70–90% of SWE
uncertainty was due to density
uncertainty. The SWE uncertainty
was typically about 5 to 7 cm for
snowpack conditions sampled by
SNOTEL. The results from the 2014
and 2016 ASO surveys were within
the range of the SNOTEL data. The
contribution from Δρ was slightly
greater in the 2016 ASO survey
than for 2014. Snow depth was
greater in 2016, and thus the depth
errors were smaller on a percen-
tage basis. This supported the
general result that the contribution
of density uncertainty to SWE

uncertainty increased at greater snow depths, either in portions of a basin where snow was deep or in years
when snow accumulation was higher.

4. Discussion and Conclusions

Lidar makes it possible to map snow depth with uncertainty of ~10 cm across a catchment. Our results show
that snow density estimation becomes the dominant source of uncertainty in lidar-based SWE mapping
when snow depth exceeds ~50 cm. The importance of snow density uncertainty increases with snow depth,
greatly exceeding snow depth uncertainty in areas (or years) with deeper snowpack and hence zones with
greater SWE volume (Figures 2 and 3). Snow density uncertainty exceeds depth uncertainty even in a histori-
cally dry and low snowpack year (2014). Because snow depth uncertainty is typically greater for lidar than
many other techniques, density uncertainty will also dominate SWE uncertainty for estimating SWE with
other approaches.

The typical snow density uncertainty across the four models here (~0.05 g cm�3) falls within the range of
model uncertainty reported in the literature (see Text S2 and Table S1). This level of uncertainty was found
in both an extremely dry year (2014) and a near-average year (2016). We therefore consider our results a rea-
sonable approximation of the uncertainty expected from density estimation. This result is based on the
assumption that differences between models can be used as a proxy for uncertainty and that the specific
models we selected portray typical intermodel differences. In actual applications, the uncertainty in modeled
density may be higher. We only considered one source of uncertainty (model selection), and ignored other
factors, including canopy influences on snow density, and errors in forcing data. The physically based models
typically differed by 0.06 g cm�3 (based on MAD), which is lower than differences documented in other
studies (on the order of 0.10 g cm�3) [Feng et al., 2008]. This clearly illustrates the importance of model

Figure 3. Percent contribution to SWE uncertainty (ΔSWE) from uncertain-
ties in modeled snow density (Δρ) versus lidar-measured snow depth (ΔHs)
across a theoretical range of snow depths and densities. HereΔHs = 8 cm and
Δρ = 0.048 g cm�3. The dashed line is the crossover point (see Figure 2),
which divides conditions where snow depth (blue region) or density (red
region) uncertainties dominate SWE uncertainty. Median snow depth
and density for the ASO analyses in 2014 and 2016 (green diamonds) and the
SNOTEL network (yellow square, n = 9013 station years) and interquartile
ranges (lines) are shown for reference. Gray contours show absolute ΔSWE
(cm) from Δρ and ΔHs combined.
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uncertainty, suggesting that density model selection can introduce large uncertainty into SWE estimates in
the absence of site-specific tuning. Prior model intercomparison studies [Etchevers et al., 2004; Rutter et al.,
2009] evaluated representation of SWE, snow depth, and energy balance variables, but there has been less
attention to modeled bulk density. A more systematic analysis [e.g., Essery et al., 2013] is needed to isolate
the structural and parametric reasons for these large differences in modeled density.

The uncertainty in modeled density (prior to elevation correction) documented by Painter et al. [2016] is
about half of the model uncertainty reported here and is the lowest found in our literature review (see
Text S2). Uncertainty in modeled density can be reduced when in situ measurements of snow density are
available to tune model parameters or develop a model correction [Painter et al., 2016]. Our analysis assumed
no knowledge of density conditions on the ground and hence reflected a general scenario of SWE mapping.
While in situ data can constrain snow density models, there are shortcomings to this practice. First, a correc-
tion is only straightforward when themodel residuals exhibit a coherent relationship with a geophysical para-
meter (e.g., elevation). Second, corrections are not likely transferable to other catchments. Density
uncertainty is also likely to be underestimated, given the tendency for sampling locations to be biased to
easily accessible flat clearings. Corrections based on these data may not be applicable to other areas in a
basin. Finally, corrections are bound to be model-specific and do little to identify specific model deficiencies.

Our multi-model approach can spatially map model agreement (Figure 1b) to guide selection of field evalua-
tion sites for more targeted testing of models. There have been few efforts to evaluate models by sampling
snow density systematically across a range of model uncertainty levels and physiographic settings [Bormann
et al., 2014]. With the development of technologies like lidar that measure snow depth through space, it is
important to assess how models represent the mean and spatial variation of snow density for mapping SWE.

We recognize that uncertainties in lidar-derived snow depth are not constant in space, as assumed above.
Lidar uncertainty varies with landscape and measurement characteristics [Deems et al., 2013]. Uncertainty
in lidar snow depth may increase by 10 cm or more in forests [Deems et al., 2013; Harpold et al., 2014].
Ongoing research is quantifying variability in lidar uncertainty across diverse landscapes. Uncertainty in snow
density estimation may also be enhanced in these same areas (e.g., slopes and forests), as most prior studies
evaluated density models in flat clearings, and thus more targeted evaluations are needed.

Historically, in situ measurements of snow depth have outnumbered SWE and density measurements by a
factor of 30 [Sturm et al., 2010]. As the snow depth measurement revolution continues, the disparity in
availability of snow depth versus density data will widen by many more orders of magnitude. Likewise, the
accuracy of snow depth measurements will improve with technological advances. Considering the domi-
nance of snow density uncertainty over depth uncertainty and the ongoing proliferation of depth measure-
ments, advances are needed in themeasurement andmodeling of snow density to resolve specific landscape
influences on density. More plentiful and more accurate density measurements in space are essential for
process understanding and for reducing uncertainty in modeled density.
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