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Abstract. Bulk density is a fundamental property of snow
relating its depth and mass. Previously, two simple models
of bulk density (depending on snow depth, date, and loca-
tion) have been developed to convert snow depth observa-
tions to snow water equivalent (SWE) estimates. However,
these models were not intended for application at the daily
time step. We develop a new model of bulk density for the
daily time step and demonstrate its improved skill over the
existing models.

Snow depth and density are negatively correlated at short
(10 days) timescales while positively correlated at longer
(90 days) timescales. We separate these scales of variability
by modeling smoothed, daily snow depth (long timescales)
and the observed positive and negative anomalies from the
smoothed time series (short timescales) as separate terms. A
climatology of fit is also included as a predictor variable.

Over half a million daily observations of depth and SWE
at 345 snowpack telemetry (SNOTEL) sites are used to fit
models and evaluate their performance. For each location,
we train the three models to the neighboring stations within
70 km, transfer the parameters to the location to be modeled,
and evaluate modeled time series against the observations at
that site. Our model exhibits improved statistics and quali-
tatively more-realistic behavior at the daily time step when
sufficient local training data are available. We reduce den-
sity root mean square error (RMSE) by 9.9 and 4.5 % com-
pared to previous models while increasingR2 from 0.46 to
0.52 to 0.56 across models. Focusing on the 21-day window
around peak SWE in each water year, our model reduces den-
sity RMSE by 24 and 17.4 % relative to the previous models,
with R2 increasing from 0.55 to 0.58 to 0.71 across mod-
els. Removing the challenge of parameter transfer over the

full observational record increasesR2 scores for both the ex-
isting and new models, but the gain is greatest for the new
model (R2

= 0.75). Our model shows general improvement
over existing models when data are more frequent than once
every 5 days and at least 3 stations are available for training.

1 Introduction

Snow is an important environmental variable. In many re-
gions, it governs essential supplies of freshwater (Doesken
and Judson, 1997; Beniston, 2003). Snow also exerts con-
trol over Earth’s weather and climate (Cohen and Entekhabi,
2001), via its insulating, reflective, and latent-heating effects.

The depth of liquid water contained in snow is one of its
most fundamental properties. Yet this quantity, referred to
as snow water equivalent (SWE), remains difficult to mea-
sure both in time and across space. Snow depth, on the other
hand, is relatively easy to measure and observations are be-
coming more plentiful. Ultrasonic devices provide a cost-
effective way of automating snow depth measurements at
a point (Ryan et al., 2008) and have grown in number in
recent years. Lidar observations of snow depth, both air-
borne and ground-based, have become increasingly desired
due their detailed measurement of the spatial dimension of
snow depth (e.g., Deems and Painter, 2006; Harpold et al.,
2014; Prokop et al., 2008). In some cases, ground-based li-
dar measurements have been automated (e.g., Gutmann et al.,
2012). Time-lapse photography of snow depth (e.g., Parajka
et al., 2012; Garvleman et al., 2013) has gained in popu-
larity as well. Finally, data from geodetic-quality GPS re-
ceivers, originally installed to measure tectonic activity, have
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been analyzed to provide daily snow depth estimates over
∼ 1000 m2 footprints (Larson et al., 2009). The result is an
increasing wealth of snow depth measurements, most with
daily resolution or better.

At a given location, SWE is the product of bulk density and
depth. Through time, depth is typically the more variable part
of this product. Because bulk density has a relatively narrow
range of values, its estimates will have relatively small er-
rors and multiplying observed snow depths by modeled bulk
densities can reliably estimate SWE (Mizukami and Perica,
2008; Jonas et al., 2009; Sturm et al., 2010). Accurate and
simple models of bulk density, requiring no coincident ob-
servations besides snow depth, date, and location, thus have
the potential to convert large collections of observed snow
depths into the more hydrologically important SWE. Such
models could allow manual SWE measurements to be re-
placed or very closely approximated by snow depth measure-
ments, which can be measured approximately 20 times faster
by hand (Sturm et al., 2010) or automated for a fraction of
the cost. In fact, Jonas et al. (2009) and Sturm et al. (2010)
demonstrated errors in modeled SWE similar to those ob-
tained from repeat observations.

Though daily observations of snow depth have become
more common, there currently exists no statistical model de-
signed expressly for converting daily observations of snow
depth to estimates of SWE (via modeled densities). Our goal
in this paper is to motivate, develop, and validate new model
for converting daily snow depth observations to bulk density
while allowing for gaps in the input/output time series. Pre-
vious models for converting observed depth to bulk density
were validated against observations at seasonal (Sturm et al.,
2010) to biweekly (Jonas et al., 2009) timescales. Because
no previous models exist for the daily time step, we com-
pare our model against these earlier models, highlighting im-
provements offered by our model when applied to daily snow
depth observations.

Our main innovation is to separate the observed negative
correlation between depth and density over short timescales
from their positive correlation at longer timescales. The
importance of different governing processes at separate
timescales has been observed in field studies of bulk densi-
ties (e.g., Chen et al., 2011). Incorporating behavior at dis-
tinct timescales into our new model provides more realis-
tic daily time series of bulk density. The model exhibits less
cross-validated error under parameter transfer when applied
to daily depth observations. We evaluate density models us-
ing over half a million observations from sites on the SNO-
TEL network (e.g. Serreze et al., 1999), where ultrasonic
depth measurements have been made in conjunction with
SWE pillow measurements.

Because the main point of modeling is to estimate den-
sity (or SWE) in locations where it is not observed, the prac-
tical application of such models requires at least two loca-
tions. Data at a first location (or set of locations), with den-
sity observations, are used to train, or estimate, the model
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Fig. 1. Data from the Lake Irene SNOTEL site in northern
Colorado. Depth and density are negatively correlated at short
timescales (10 days). The accumulation and ablation phases are
distinguished by the vertical, dashed line. During the accumula-
tion phase, depth and density are positively correlated at longer
timescales (months). During ablation, the variables are negatively
correlated at long timescales.

parameters. Model parameters are determined via ordinary
least squares for linear regression or by other objective func-
tion minimization. The model with “fit” parameters is then
applied at the second location, where density observations
are not available. We refer to applying the trained model pa-
rameters from the first location(s) as parameter transfer. Be-
cause the location(s) and time periods used for estimating
model parameters may be different from where and when
these parameters are applied, parameters are transferred over
both space and time.

2 Background

2.1 Conceptual model: empirical relationships between
depth and density

A preliminary illustration and analysis of the relationship
between snow depth and bulk density at daily to interan-
nual timescales provides useful context for our model devel-
opment. A fundamental problem for transforming observed
snow depths to bulk densities is that the correlation of these
variables depends on both the timescale considered and on
the phase (accumulation vs. melt) of the snowpack. For the
purposes of motivating our model, we highlight the center of
the snow season, February–May, while neglecting the begin-
nings and ends. We provide a more complete, detailed dis-
cussion in Appendix A.

At timescales of several days, snow depth is nega-
tively correlated with bulk density via three main processes
(Fig. 1). (1) Freshly fallen snow increases snow depth. How-
ever, new snow typically has lower density than the existing
snowpack, and therefore bulk density decreases after a storm.
For example, in Fig. 1, a storm on 22 April 2010 yielded
an increase in snow depth of roughly 50 cm. At the same
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time, the density of the new snow was low enough so that
the bulk density of the entire snowpack decreased by nearly
100 kg m−3. (2) In the days following a snowfall, fresh snow
undergoes rapid thermal and mechanical compaction. During
this interval, density increases while depth decreases, again
yielding a negative correlation. Similarly, (3) surface melt
decreases snow depth over a period of days while increas-
ing bulk density via meltwater percolation (e.g., through-
out May 2011). Though other depth–density processes exist,
these three largely control the relationship between depth and
density at timescales of days and yield a negative correlation
between the two variables.

Figure 1 also illustrates correlation between depth and
density at longer timescales. At scales of months, we see
different correlation between depth and density before and
after maximum snow accumulation, shown by the dashed
lines, which roughly separates the accumulation and abla-
tion phases. In the accumulation phase, the variables are
positively correlated; density increases with the seasonal ac-
cumulation of snow. Also on an interannual basis, seen by
comparing the two years, snow depth is positively correlated
with density. In 2011 the deeper snowpack is more dense.
Physically, or at least mechanically, snow accumulation at
timescales of months and longer generally increases the me-
chanical loading of the snowpack and increases its density.
While snow undergoes other kinds of metamorphisms, which
influence its bulk density on longer timescales, these are ex-
plicitly ignored in our model because we do not incorporate
necessary observations such as temperature.

In contrast to the accumulation phase, depth and density
become negatively correlated over long timescales in the ab-
lation phase. In Fig. 1, density continues to increase after
May 1 as melt reduces the snow depth. Therefore, density is
negatively correlated with depth on both short (day) and long
(month) timescales during the ablation phase. For example,
in May 2011, two late-season storms increase depth but re-
duce density, while ongoing melt reduces depth but increases
density.

Figure 2 shows the correlation between density and depth
as a function of timescale, for the period prior to peak SWE.
The figure reveals that depth and density are strongly nega-
tively correlated at timescales of 5–10 days (inner 50th quan-
tile less than−0.8). In contrast, depth and density are weakly
correlated at timescales longer than 60 days. For example, at
135 days, the median value of correlation is approximately
0.45 (with inner 50th quantile from roughly 0.2 to 0.6). Be-
tween these two timescales, there is a shift from negative to
positive correlation. The substantial range of correlation at
all window sizes results from the different processes affect-
ing depth and density and the variety of locations at which
data are sampled. The shift from negative to positive correla-
tion occurs at a timescale of approximately two months.
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Fig. 2. Correlation between snow depth and bulk density prior to
peak SWE as a function of window size (number of days used to
compute the correlation). Ten thousand points were randomly se-
lected from our full data set (described below) and odd-length win-
dows around each expanded from 5 to 135 days for calculating the
correlation whenever no more than 1 % of days were missing. Boxes
represent the inner 50th quantile and whiskers the inner 90th quan-
tile of correlations for each window. Because larger windows with
less that 1 % missing points become more difficult to find prior to
peak SWE for randomly selected points, the number of correlations
over which boxplots are computed ranges from roughly 7000 at the
5-day window to 1500 at the 135-day window.

2.2 Existing models

A common approach to modeling snow bulk density is to be-
gin with physical principles. The problem with this approach
is that observed time series of many meteorological variables
are required. For example, in the second snow model inter-
comparison project (SNOWMIP2; Essery et al., 2009) only
2 models out of 33 did not require incoming shortwave ra-
diation. Minimum requirements of even simple snow den-
sity models, such as SNOW-17 of Anderson (1973) or that
of De Michele et al. (2013), are time series of temperature
and precipitation. A majority of snow depth measurements,
including many automated measurements, do not have these
accompanying observations, and including them can repre-
sent significant expense.

The simplest approach to modeling snow bulk density is
to derive a climatology. Mizukami and Perica (2008) justi-
fied this approach by comparing the interannual variability
of density and depth. They clustered climatological densi-
ties from SNOTEL in the western US into 4 groups primar-
ily distinguished by proximity to the Pacific Ocean, though
with some geographical overlap between groups. They devel-
oped a linear regression model of bulk density as a function
of day, fitting coefficients in the 4 regions over two periods
(December–February, March–April).

Borman et al. (2013) considered snow density observa-
tions from both hemispheres and applied linear regression to
identify the dominant climatological and physical controls.
They developed a model of snow bulk densities on the first
day of spring using 9 predictor variables, including maxi-
mum snow depth and observed temperatures. Total winter
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precipitation and air temperature were found to be most im-
portant factors, though model parameters varied substantially
by geographic region.

Jonas et al. (2009) and Sturm et al. (2010) developed snow
bulk density models for the express purpose of converting
observed depths to SWE. Both models use observed snow
depth to predict a corresponding bulk density. The Sturm et
al. (2010) model was intended as a general-purpose tool to
convert observed snow depth to SWE in North America, pro-
vided snow depth, day of year, and the snow class, as defined
by Sturm et al. (1995). Sturm et al. (2010) calibrated their
model separately for five broad snow classes (alpine, mar-
itime, prairie, tundra, and taiga) and provided the parameters
for application of their model across this domain.

The Jonas et al. (2009) model was developed using more
than 5 decades of biweekly observations from the Swiss
Alps. It was tuned monthly to both specific altitudes and ge-
ographical regions in Switzerland. Though day of year (or
month) is not a predictor in the Jonas model, time becomes
an implicit predictor when selecting a training period. The
intent of the model was not a general-purpose tool for pre-
dicting snow density, but a demonstration of a methodology.

Neither the Sturm et al. (2010) model nor the Jonas et
al. (2009) model was designed for modeling snow density
at the daily time step. Jonas et al. (2009) noted “that the
model may not be suitable to convert time series of [depth]
into SWE at daily resolution or higher. Transient phenom-
ena such as the settling of recently fallen fresh snow cannot
be comprehended by the model. Converted time series may
therefore feature an incorrect fine structure in the temporal
course of SWE.” Here, we develop a model explicitly de-
signed to provide estimates of density on the daily timescale.
As illustrated above, this will require accounting separately
for the relationships between depth and density on short and
long timescales.

In general, modeled density errors tend to be small. For ex-
ample, both Jonas et al. (2009) and Sturm et al. (2010) high-
light that modeled density errors yield SWE errors which ap-
proximate those observed for repeat measurements due to lo-
cal variability. The conservative nature of density means that,
even when applied at the daily time step, the models provide
reasonable estimates. Though only small statistical improve-
ments are possible, we feel a model developed explicitly to
represent daily variations in density is justified. To help in-
form model selection by individual practitioners, we include
discussion and evaluation of when the additional complexity
of our new model is warranted.

3 Methodology

We evaluate the Jonas et al. (2009) and Sturm et al. (2010)
density models (hereafter, the Jonas and Sturm models) with
daily data to provide baselines for the development of an al-
ternative model explicitly intended for use at a daily time
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Fig. 3. Data used in this study come from the SNOTEL sites shown
in this figure. SNOTEL sites were selected if they were within
70 km of GPS snow depth stations. The number of SNOTEL sites
within this radius of each GPS station is shown. Three GPS stations
in Alaska, each with 1–2 associated SNOTEL sites, are not shown.

step (and because no such model currently exists.) Given our
focus on the daily time step, our data sets and approach to
training and evaluating the models differ from what was used
in Jonas et al. (2009) and Sturm et al. (2010).

3.1 Data

The data set used to train and evaluate the models comes
from SNOTEL stations (Serreze et al., 1999). Simultaneous
observations of snow depth and SWE from selected SNO-
TEL sites were manually quality controlled and (bulk) den-
sity calculated as the ratio of SWE to depth. Only water
years with at least 100 resulting density observations (be-
tween days of year−92 and 181, or October–June, as in the
Sturm model) were retained for model fitting. Gaps in daily
time series were permitted.

Not all SNOTEL stations were used in our analysis. In-
stead, we used only SNOTEL stations within 70 km of Plate
Boundary Observatory GPS stations (Fig. 3) currently being
used to estimate snow depth (Larson and Nievinski, 2013).
The final data set contained 657 380 total observations of
both depth and density at 345 SNOTEL sites in 19 differ-
ent water years spanning 1994–2012. A total of 3370 water
years were included.

Although it is beyond the scope of this paper, our final
goal is to apply the daily density model to convert GPS-
based snow depth measurements to estimates of SWE. This
prompted our selection of SNOTEL sites. While no GPS
snow depth observations are used in this study, we do treat
each SNOTEL station as if it were a GPS station: snow
depth is observed and used as a predictor in the density
model with parameters fit to the other SNOTEL observations
within 70 km. As described below, our experiment investi-
gates model parameter transfer over scales of tens of kilome-
ters and can be applied to other snow depth measurements
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with approximately daily temporal frequency (for exam-
ple ground-based lidar surveys or ultrasonic depth measure-
ments). A future study will report on applying the model to
GPS sites and validation against in situ density observations.

Several authors have noted systematic errors with SWE
pressure measurements used by SNOTEL observations
(Johnson and Marks, 2004; Meyer et al., 2012). We do not
attempt to identify or correct any such errors, which would
require temperature observations at the ground–snow inter-
face or site-by-site comparison of SWE against accumulated
precipitation. Also, because these studies indicated that mea-
surement errors may be of both signs, it is prohibitively dif-
ficult to reason about the impact of such errors on our re-
sults. After the manual quality control mentioned above, we
assume the SNOTEL measurements are accurate to within
their observation resolutions. The resolution of the SNOTEL
SWE measurements is 0.1 inches (0.254 cm), and that of
snow depth is 1 inch (2.54 cm). Assuming these are our only
sources of error, an error analysis of the calculated density
over our full data set using half these accuracies as the error
in each variable found 80 % of the density errors to be less
than 1 % and 99.5 % of density errors to be less than 20 %.

Because our assumed errors (and perhaps systematic er-
rors) are of smaller relative magnitude when SWE and depth
are at a maximum, our validation will consider statistics re-
stricted to a three-week window around peak SWE at each
site and water year, in addition to statistics calculated for the
full records at all sites. The peak-SWE period is important to
many hydrologic applications.

3.2 Experimental design

For each SNOTEL site in the data set, we (1) retain only its
location, snow depth, and date information; (2) identify the
other SNOTEL sites in the data set which fall within 70 km of
the current site; (3) train all three models (Sturm, Jonas, and
ours) to all available depth and density observations at these
other sites; (4) transfer the trained model parameters to the
site of interest; (5) apply the model to estimate daily density
from observed depths at the point of interest; and (6) generate
(cross-validated) skill measures for both density and SWE
estimation, bringing in the corresponding observations at the
point of interest.

Our methodology evaluates the models under parameter
transfer over scales of tens of kilometers. It is reasonable to
believe that local training data (from within 70 km) are most
appropriate for deriving and transferring model parameters to
a point of interest (e.g., Mizukami and Perica, 2008; Sturm et
al., 2010). However, a drawback of our general methodology
is that it can only be used within 70 km of available training
data. Our model is not for more general, geographical ap-
plication, as in Sturm et al. (2010). Although it is possible
with our model formulation, we did not stratify training data
by elevation, as in Jonas et al. (2009), who found this step
provided only modest improvements in model skill. When

fitting models, we combine all local data (i.e., within 70 km)
equally, regardless of elevation.

Because we use local data to train the models, one might
question if interpolation of concurrent density observations
is easier than regression modeling and equally accurate. Re-
gression modeling has the advantage of using historical data
and does not require concurrent observations. Also, at the
70 km scale there may be important differences between
snow depth time series at the locations where densities are
observed and modeled. A regression model can account for
such disparities in snow depth time series, which should lead
to more robust estimates.

3.3 Jonas and Sturm models

Jonas et al. (2009) fit a simple linear regression model
(Eq. 1), where density (ρ) is a linear function of depth (h)

and the parameters (a, b) are solved separately both monthly
and over three elevation bands.

ρ (h,month, altitude) = a · h + b (1)

They also employed a further bias correction term in in-
dividual regions. This step is not used in our study as we
train the Jonas model for application to individual points in-
stead of regions. As we also do not train on elevation bands,
parameters are only a function of month (not altitude or re-
gion). For each SNOTEL station location, we calibrate these
2 parameters for the 9 months (October–June).

Sturm et al. (2010) expressed density (ρ) as a function of
depth (h) and day of year (DOY), and determined 4 general-
purpose parameters (ρmax, ρ0, k1, k2) once and for all for
each of 5 snow classes (Sturm et al., 1995).

ρ (h,DOY, class) =

(ρmax− ρ0) ·
[
1− exp(−k1 · h − k2 · DOY)

]
+ ρ0

(2)

In our study, we calibrate the Sturm model once for each
SNOTEL location using data from SNOTEL stations within
70 km, yielding 4 parameters for each point. Where Sturm et
al. (2010) used a nonlinear, Bayesian analysis of covariance
to fit their model, we employed constrained optimization.
Our objective function was root mean square error (RMSE)
of fit. Optimization was considered not to converge if the dif-
ference between any parameter solutions at 1× 10−7 preci-
sion and 1×10−9 precision was greater than 1 % of the range
over all climate classes reported by Sturm et al. (2010).

3.4 A new model for daily applications

In both the Jonas and Sturm model equations, density is re-
lated to snow depth via a single coefficient, implying a re-
lationship of a certain sign (or zero) on all timescales. For
Jonas, this is parametera in Eq. (1). For Sturm, this is param-
eterk1 in Eq. (2). In the original applications of the Jonas and
Sturm models, this approach was reasonable because training
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data were observed less frequently than biweekly and empha-
sized the positive correlation of depth and density. Accord-
ingly, both studies only reported positive coefficients. Based
on the correlation of snow depth and density over different
timescales and snow phases (Figs. 1 and 2), we expect these
models to encounter difficulty when fitting their snow depth
coefficients to daily data. During the ablation phase, a posi-
tive correlation between depth and density is problematic in
the Sturm model. Because the Jonas model is tuned monthly,
it should perform better during the ablation phase. However,
the depth coefficient in the Jonas model could be negative
during the accumulation period when tuned to daily data over
an interval of a month.

In developing a snow density model for daily applications,
we chose to start from the Jonas model. Our first step is to
derive a new set of predictor variables for the model. To ad-
dress the problem of depth and density correlation on differ-
ent timescales, we separate observed snow depth time series,
h, into two components or two new predictors of density. To
model timescales of months, we use a moving window, of
odd lengthW days, to average snow depths centered about
the day to which the value is assigned. Days when depths are
unavailable are omitted from the average, allowing for gaps
in the time series. Because the first and last (W − 1)/2 days
of the time series have data only to one side and will often be
positively biased, we do not average at these points but retain
the observed depths. We call this new predictorhAvg. It is
illustrated along with the observed time series,h, in the top
panel of Fig. 4.

The next two predictors come from subtractinghAvg from
the original depth time series (h) to get the differences,
or anomalies, from the running average. Different physi-
cal processes (accumulation versus compaction or melt) are
dominant during periods with positive and negative anoma-
lies. Therefore, we split these into two separate predictors,
hAbove andhBelow (Fig. 4). On days when the anoma-
lies are negative,hAbove is set to zero. Likewise, when
anomalies are positivehBelow is set equal to zero. These
three new predictors transform the original snow depth time
series,h, into long-range variability (hAvg) and into posi-
tive (hAbove) and negative (hBelow) short-range anomalies.
Their sum gives the original time series,h.

A second, more subtle problem with the Jonas and Sturm
models used on a daily time step is a general deficiency in
their overall shapes or structures. These will be discussed in
the results section. While some of the issues stem from nega-
tive correlation between depth and density in the ablation pe-
riod, the Jonas model also exhibits discontinuities or jumps in
density estimates between months when the model is trained.
Though we do not include the methodology in our analysis,
an unpublished modification to the original Jonas model has
been implemented in practice which eliminates these discon-
tinuities. (T. Jonas, personal communication and review of
this paper, 2014). The modification requires estimating SWE
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Fig. 4. Predictor variables for a new model of daily bulk density.
Example for Lake Irene SNOTEL site in 2010. The observed snow
depth time series,h, is not used as a predictor but is transformed into
three components. Long-range variability,hAvg, is shown in the top
panel. Positive,hAbove, and negative, hBelow, anomalies of the
observed time series,h, fromhAvg describe short-range variability.
The sum of these three new predictors equalsh. The bottom panel
shows the density climatology of fit,ρclim, which is derived from
neighboring SNOTEL sites and used for both fit and prediction.

on the 15th day of each month and linearly interpolating it
on to intervening snow depths before training the model.

To address structural problems, which may arise from fit-
ting our daily model on a monthly basis, we investigate the
incorporation of a daily density climatology of fit,ρclim, into
the model. The average density on each day over all data used
to fit the model is applied as a predictor to both fit the model
and in the subsequent prediction; this predictor comes strictly
from the fitting data set. If any days are missing from the
training set, these are linearly interpolated using their nearest
neighbors. Figure 4 shows an example ofρclim for the Lake
Irene SNOTEL site, based on the average from the 17 sta-
tions within 70 km. Early- and flate-season fluctuations are
due to greater natural variability during these periods or lack
of data in some years. The general trend inρclim is to increase
until mid-May and then decline after that, after the snow is
fully ripened. See Appendix A for more detailed discussion
of density time series.

Having derived four new predictors of bulk density, our
full daily model is expressed in Eq. (3):

ρ (h,month,neighbor) =

a · hAvg + b · hAbove+ c · hBelow+ d · ρclim + e.
(3)

The model can be trained over arbitrary periods of time
or on various subsets of the training data. The choice of
training periods is independent from the number of days,W ,
used to derive three of the predictor variables in our model.
The predictors are derived before the model is fit to any

The Cryosphere, 8, 521–536, 2014 www.the-cryosphere.net/8/521/2014/



J. L. McCreight and E. E. Small: Modeling bulk density and snow water equivalent 527

temporal subset of them. However, the primary consideration
for choosing bothW and the length of the training periods
is the same, the availability of training data in each. If only
one observation is available inW days to derive thehAvg
predictor, then the anomaly terms (hAbove andhBelow) are
zero. If there are no training observations in a training period,
then parameters cannot be fit. For each training interval and
choice ofW days for smoothing snow depth, five parameters
are determined when fitting our regression model.

In this study, we choose to tune the model monthly to al-
low for direct comparison with the published usage of the
Jonas model. We also choose not to separate the model train-
ing into accumulation and ablation periods of the snow-
pack. This would likely only improve simulations after April,
though it adds an extra layer of complexity. At the monthly
timescale, most months are accumulation, the last is usually
just ablation, and there may be a transitional month in some
years. Finally, we limit the range of the regression mod-
els (Jonas and ours) to the range of observed values. Esti-
mates above or below these observed limits are set to the
corresponding limit. This issue does not arise with the Sturm
model.

We investigated eight models of intermediate complexity
between the Jonas model and our full model. Our proposed
model is more complex than the Jonas model, having five pa-
rameters instead of two. There is potential to incrementally
simplify our model towards the Jonas model by removing
one or more predictors and their associated parameters. For
example, one could simply use theρclim predictor as an ad-
dition to the Jonas model or exclude it from our full model.
These intermediate models would have three and four param-
eters, respectively. Our evaluation of the intermediate mod-
els (Appendix B) found the lowest RMSE under parameter
transfer for our full model. Our full model was also partic-
ularly insensitive to choice ofW and was minimized forW
greater than 17 days. Details are discussed in Appendix B.
For the remainder of the paper we present results from our
full model withhAvg computed during a 21-day window.

3.5 Model evaluation and comparison

Skill measures are calculated on the set of observations for
which all models provide valid estimates. Our calibration of
the Sturm model failed to converge at some stations, and ap-
proximately 24 500 points were not estimated, or 3.7 % of
the full data set. The Jonas model and our model failed at
roughly 150 and 300 points, respectively. This occurs partic-
ularly at the beginning and end of water years when there is
not enough data to train the model for a given month or to
calculate the running average or anomalies. Only 0.023 and
0.046 % of the full data set were not estimated by these mod-
els. In the results below, statistics are computed on approx-
imately 632 000 observations estimated by all three models.
We also compute some statistics focusing on the three-week
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Fig. 5. Examples of observed and modeled density and SWE time
series in two water years at SNOTEL site 1145 Kilfoil Creek, UT.
Depth and density values for depths less than 1.27 cm (0.5 in) are
suppressed from the plot.

window centered on peak SWE in each water year. This sub-
set includes 62 324 observations.

4 Results

4.1 Illustrative example

We begin with an illustrative example of important improve-
ments offered by our model. These will be quantified in the
following subsection. Figure 5 presents observed and mod-
eled density and SWE time series at the Kilfoil Creek, UT,
SNOTEL site for the 2011 and 2012 water years. This ex-
ample demonstrates a range model of performance under
different snow conditions. Snow accumulation in 2011 was
roughly double that of 2012. In 2011, accumulation was on-
going with large snowfall events in November and Decem-
ber. In 2012, accumulation events were rare, with a single
large event in January yielding a third of the maximum ob-
served SWE. Both peak SWE and melt-out occurred a month
earlier in 2012.

Viewed at the seasonal scale, all three models perform
reasonably well in 2011. In 2012, the functional shape of
the Sturm model is grossly inappropriate compared with the
other two models. The Sturm model’s dependence on day of
year results in overestimation of density by as much as 50 %
at the beginning of March. The Jonas model and our model
provide much better estimates for the entire 2012 season.

At the monthly scale, the Jonas model fit to daily data
results in inappropriate time series during the last several
months of both seasons. For example, in March and April of
2011 and in March of 2012, modeled densities decrease with
time over each month, contrary to the increases in density
that are observed. This incorrect relationship combined with
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model fitting on a monthly basis results in unrealistic jumps
in modeled density between months and systematic errors in
both density and SWE.

Viewing the model estimates over timescales of days, den-
sity variations associated with individual storms and melt
events are missing from both the Sturm and Jonas mod-
els. In contrast, our model captures much of the short-range
variability in density. This results from covariances between
snow depth and density at two separate timescales in our
model. Not only is short-range covariance largely missing
from the Sturm and Jonas models, but it is of the wrong sign
(Fig. 5). This is most easily seen for the large accumulation
event in the middle of January 2012 when SWE increased
from approximately 10 to 17 cm. Both the Jonas and Sturm
models have an associated increase in density with this accu-
mulation, whereas our modeled density decreases in agree-
ment with the observations. For the Jonas and Sturm models,
large SWE errors are associated with this event because the
density error is correlated with the change in snow depth.
Though the modeled increases in density are small at short
timescales in the example, the errors are large because ob-
served density actually decreases. These errors are then mag-
nified by the observed depth in the calculation of SWE. The
same problems can be seen near peak SWE at the beginning
of May 2012. Here the structural errors of the Jonas model,
as applied at the daily time step, further exacerbate its density
errors. Modeled peak SWE in 2012 is over 50 % greater than
observed for the Sturm and Jonas models, while the estimate
from our model is only 20 % too high.

The example in Fig. 5 also highlights the Sturm model’s
systematic underestimation of density during the ablation
phase. From mid-April to mid-May in 2011, the positive cor-
relation of depth and density combined with the calibrated
functional shape of the model result in density estimates that
are too low. The extent of this problem will be revealed in the
following subsection.

While our new model is by no means perfect, separation
of the long- and short-range relationships between depth and
density produces modeled variability, which closely tracks
the observed densities and yields smaller density and SWE
errors. The inclusion of the fitting climatology results in
greater continuity of modeled density.

4.2 Model diagnostics

Table 1 presents three skill measures of modeled density and
SWE for both the full data record and for the three weeks
centered on peak SWE in each station and water year. Model
density biases, important to verify because models are ap-
plied under parameter transfer, are very small, less than a
percent compared to observed densities. SWE biases are ef-
fectively zero over the entire record. Near peak SWE, bias is
nonzero but remains small, especially the Jonas model and
our model.

Fig. 6.Scatter plots of observed and modeled bulk density (top) and
SWE (bottom) for all 3 models.

Density RMSE is less than measurable and even smaller
near peak SWE than over the full record. On the other hand,
because density errors are multiplied by larger observed
snow depths, SWE RMSE near peak SWE is greater than
over the full record. RMSEs of both density and SWE im-
prove, moving from the Sturm model, to the Jonas model, to
our model. Relative to the Sturm model, the Jonas model and
our model improve density RMSE by 5.6 and 9.9 %, respec-
tively. Focusing on peak SWE, these improvements increase
to 8 and 24 %. Relative to the Jonas model, our model yields
a 4.5 % improvement in density RMSE over the full record
and a 17.4 % improvement near peak SWE. Improvements in
SWE RMSE are similar.

Coefficients of determination (R2) for both density and
SWE also improve across models (Table 1). Near peak SWE,
improvements in densityR2 are much greater. During this
period, our model explains 16 and 13 % more of the ob-
served density variability than the Sturm and Jonas mod-
els, respectively. This corroborates that the model more ac-
curately replicates daily variability in density, as illustrated
in the previous section. The difference in theR2 values be-
tween density and SWE indicates the degree to which snow
depth dominates estimation of observed SWE. Though 54–
44 % of the density variability over the full record remains
unexplained by the models, only 6–4 % of the SWE variabil-
ity is unaccounted for. At peak SWE, though more of the
density variability is explained, SWER2 values are nearly
identical to those over the full record because the magnitude
of SWE is greater.

Scatter plots of observed vs. modeled densities and SWE
are presented in Fig. 6. The range of modeled density is
less for the Sturm model than the other two models. One
can also see the two regression models (Jonas and ours) are

The Cryosphere, 8, 521–536, 2014 www.the-cryosphere.net/8/521/2014/



J. L. McCreight and E. E. Small: Modeling bulk density and snow water equivalent 529

Table 1. Model skill statistics under parameter transfer for both the full record and a subset considering only the three weeks centered on
peak SWE for each station and water year.

Time period Statistic Variable Sturm et al. Jonas et al. This paper

Full record

Bias
Density (g cm−3) −0.001 0.000 0.000

SWE (cm) −0.21 −0.05 0.07

RMSE
Density (g cm−3) 0.071 0.067 0.064

SWE (cm) 7.1 6.7 6.3

R2 Density 0.46 0.52 0.56
SWE 0.94 0.95 0.96

Peak SWE

Bias Density (g cm−3) −0.015 0.000 −0.001
SWE (cm) −2.4 −0.2 0.3

RMSE Density (g cm−3) 0.050 0.046 0.038
SWE (cm) 8.4 7.8 6.5

R2 Density 0.55 0.58 0.71
SWE 0.95 0.95 0.96
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Fig. 7. Distribution of RMSE in density and SWE at individual
SNOTEL stations.

sometimes constrained to the limits of the observed densi-
ties. The correspondence between the observed and modeled
densities is not great for any model, as described above by
their coefficients of determination. In comparison, the scatter
plots show the strong correspondence between modeled and
observed SWE.

The statistics in Table 1 consider all modeled stations and
water years simultaneously. Figure 7 shows the distribution
of (full-record) RMSE over the individual SNOTEL stations.
For both density and SWE, the RMSE distributions consis-
tently shift to lower values, going from Sturm, to Jonas, to
our model. The figure describes the probability of RMSE un-
der parameter transfer as a function of model used. The tails
of the distributions in Fig. 7 indicate that our model is some-
times worse than the other models. Though worse than Sturm
and Jonas in about 10 and 12 % of cases, our model’s rela-
tive RMSE only exceeds 10 % in approximately 3 and 1 %
of cases, respectively. Notably, the Sturm model performed
much better in the few cases when less than 3 SNOTEL sta-
tions, or less than approximately 3500 observations, were
available to train the model.

Density and SWE residuals (modeled–observed) are plot-
ted as a function of day of year in Fig. 8. The figure reveals
heteroskedasticity of the errors with day of year. The range

of density errors is greatest at the beginning and end of year,
when snow depths are small and large fluctuations in density
can occur in very short time periods. These are also times
when observed density errors are the largest. The range of
density errors is smallest in the month of February. The width
of the inner 90th quantile of SWE errors increases with day
of water year, while the width of inner 50th quantile is con-
stant after April (though there are far fewer data points after
May). Notably, the SWE errors do not follow the seasonal
increase and decrease of snow depth.

Figure 8 reveals that the structural problems at the daily
time step of the Sturm and Jonas models illustrated in Fig. 5
are common, rather than limited to that example. The Sturm
model residuals become negatively biased at the beginning
of April. By May the upper range of the 50th quantile nears
zero, indicating a severe and systematic underestimation of
density at the end of the year. This systematic underestima-
tion during the melt period partially results from the posi-
tive correlation of depth and density in the Sturm model.
The sawtooth shape of the Jonas residuals indicates a sys-
tematic progression from overestimation to underestimation
across each month, starting in March and continuing through
June. This results from tuning the models to daily data over
each month. Subsequent, large jumps in the value of the
residuals between months are also apparent. In contrast, our
mean density residual deviates little from zero through the
year. Deviations in the bias are typically found at the end
of the months, similar to those of the Jonas model but of
smaller magnitude. These persist because parameters in ad-
jacent months are tuned independently. Though our model is
not perfectly continuous in time, it is certainly an improve-
ment over the continuity of the Jonas model. These disconti-
nuities are clearer in our SWE residuals beginning in May.

Because peak snow accumulation is of primary concern
for estimating water yields, we examine the models’ percent
error during a three-week window centered on peak SWE in
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Fig. 8. All model residuals (modeled–observed) in density (upper panel) and SWE (lower panel) as a function of day of water year for each
model. Green line shows mean error, blue lines indicate the inner 50th quantile of error, and the red lines the inner 90th quantile of error.

Table 2. Nonexceedance probabilities for a range (of absolute
value) of percent error calculated for three-week windows centered
on peak SWE. Numbers apply to both density and SWE as depth is
observed and assumed to be correct. Jonas et al. (2009) cite typical
values of density measurement error as 15–20 %.

Empirical probability of
nonexceedance during 3 weeks
centered on peak SWE

Absolute value Sturm Jonas This paper
of percent error

5 0.25 0.27 0.30
10 0.48 0.50 0.56
15 0.66 0.68 0.75
20 0.80 0.80 0.86
25 0.88 0.88 0.93
30 0.93 0.92 0.96

each year. Both Jonas et al. (2009) and Sturm et al. (2010)
evaluated their models in terms of percent error. They com-
pared these errors to errors associated with repeated obser-
vations at a single location. Table 2 shows the likelihood of
modeled absolute percent error not exceeding thresholds be-
tween 5 and 30 %. (Note that, because depth is observed,
percent error is the same for density and SWE.) At the time
of peak SWE, we again see consistently better performance

moving from the Sturm model to the Jonas model, and to
our model. Our model resulted in no more than 15 % error
75 % of the time, whereas the Jonas and Sturm models did
not exceed this threshold 68 and 66 % of the time, respec-
tively. Both the Sturm and Jonas models keep 80 % of esti-
mates to less than 20 % error, while our model manages to do
this 86 % of the time. That is, for dates near peak SWE, our
model has almost one-third less errors beyond the typically
observed range of 20 % error.

4.3 Model parameters

Separating the relationship between density and depth over
long and short timescales was a main objective in developing
a new model for daily applications. We proposed new predic-
tors and parameters to achieve this goal. Figure 9 shows the
distribution of model parameters for each model. Parameter
distributions for January and April are shown for the Jonas
model and our model. Our model coefficients for the short-
timescale predictor,hAbove, are almost entirely negative.
A very large majority ofhBelow coefficients are also neg-
ative. These distributions indicate negative correlation be-
tween depth and density for timescales shorter thanW (= 21)
days. The coefficients of long-timescale snow depth variabil-
ity, hAvg, are almost entirely positive, indicating positive
correlation of the variables at timescales longer thanW days.
Some negative coefficients ofhAvg are expected in April
for sites where historical training data reflect ablation phase
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conditions and long-timescale negative correlation between
depth and density.

The coefficients of depth (h) in the Jonas and Sturm mod-
els are distributed similarly as the coefficients ofhAvg in our
model. In contrast, the Sturm coefficients cover a slightly
wider range of values. In the Jonas model, the values of
the intercept term increase with month and govern minimum
modeled densities. In our model, the intercepts interact with
the coefficient ofρclim. In April, coefficients ofρclim are dis-
tributed around one and the intercepts around zero. In Jan-
uary, intercepts are positive and distributed about 0.1, while
the coefficients ofρclim are distributed about 0.5.

5 Discussion

The skill measures presented above indicate that our model
yields improvements over the existing models when evalu-
ated at the daily time step. The Jonas and Sturm models were
not intended for daily applications. The example shown in
Fig. 4 highlights their shortcomings at this timescale, which
are largely resolved using our formulation.

5.1 Contextualizing skill improvements

Even though our model offers more realistic density estima-
tion at the daily time step, the skill improvements are not
large (e.g., in terms of RMSE). There are two reasons why
it is difficult to significantly improve the model skill. First,
density is a conservative variable: it is naturally constrained
between fairly narrow limits and only approaches these lim-
its in certain circumstances. This is the premise of such a
simple approach to modeling density from depth. Because
model errors are rarely large, there is little room for improve-
ment. Second, we have evaluated the models under parame-
ter transfer: data from the station where density is estimated
and evaluated are not used to fit the model. This provides an
added challenge to estimation but provides a more realistic
evaluation in terms of applications, for example converting
GPS-derived snow depth into SWE at locations where den-
sity observations are not available. Parameter transfer is a
challenge of the application rather than a shortcoming of the
models.

For additional insight on the models’ ability to accurately
represent the relationship between depth and density, we
evaluate each without (spatial) parameter transfer. Instead of
fitting the model at nearby sites and transferring the param-
eters to the site of interest, we now fit the models to density
observations at the site of interest and evaluate modeled den-
sity and SWE over all years at this location. Because density
climatology (ρclim) is a predictor in our model, we fit the
model separately for each year while dropping the year to
be estimated from the training data set (leave-one-out cross-
validation on a water year basis). We do not apply this cross-
validation to the Sturm and Jonas models because it will have

a negligible effect. This procedure is more stringent for our
model, but only slightly penalizes years with extreme densi-
ties. Unlike for parameter transfer, model assessment at the
location of fit is not confounded by differences between sites
(up to 70 km apart) due to elevation, slope/aspect, vegetation,
etc.

Table 3 shows skill statistics offit for the three models
and skill improvements compared to skill statistics under pa-
rameter transfer. As expected, fitting the regression (Jonas
and our) models completely eliminates bias (not shown). The
Sturm model retains a very small bias because optimiza-
tion did not minimize bias, only RMSE. The model statis-
tics in Table 3 improve moving from the Sturm model to
the Jonas model to our model, but these improvements are
considerably greater than under parameter transfer. Now our
model explains 19 % more variance in density, for a total of
(R2

=)75 % variance explained. The Jonas and Sturm mod-
els have R2 increases of 14 and 12 %, respectively, yielding
66 and 58 % variance explained. The strong improvement for
our model indicates that it more appropriately captures the
relationship between density and depth when applied at the
daily timescale. These improvements also illustrate the skill
penalty associated with parameter transfer.

5.2 Why not use our model?

In this study, we have only investigated parameter transfer
over scales of tens of kilometers. We do not consider mod-
eling density at distances further than 70 km from the near-
est SNOTEL site (or site with similar data). Therefore, our
results do not apply to locations on the scale of hundreds
of kilometers from locations with density data required for
model training. In the Results section we also noted better
average performance of the Sturm modelas used in this study
when less than three nearby (within 70 km) stations were
available to train the model. This result suggests that using
the Sturm model is preferred when training data are either
limited locally or when only available far from the site at
which density will be estimated. At the same time, we illus-
trated a general problem with the relationship between den-
sity and depth in the Sturm model during the melt phase.
Improvements to the general approach of Sturm et al. (2010)
might be gained if the model were tuned separately for accu-
mulation and ablation phases.

Daily depth data were used to evaluate the three models
in this study. However, if snow depth observations are less
frequent than daily, at what point does the performance of
the Jonas model exceed the performance of our model? We
evaluate this question by systematically degrading the input
time series of snow depth, retaining at most one observation
every 2, 3, 5, 7, and 9 days. We could not degrade the input
time series to one observation more than every 10 days with-
out losing the anomaly predictors because smoothed snow
depth and the anomaly terms are calculated using 21-day
moving windows. Relative to the Jonas model evaluated on
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Fig. 9. The distribution of model parameters over all SNOTEL sites. If the parameter is the coefficient of a predictor, the predictor name
is shown in parentheses. Otherwise the parameter name is given. Top panel is the Sturm model, middle panel is the Jonas model, and the
bottom panel is the model developed in this paper.

Table 3.Model statistics of fit (not under parameter transfer). Improvements compared to parameter transfer statistics are indicated by1.

Statistic Variable Sturm et al. (2010) Jonas et al. (2009) This paper

RMSE
Density (g cm−3) 0.062 (1 = −0.009) 0.055 (1 = −0.012) 0.048 (1 = −0.016)
SWE (cm) 5.57 (1 = −1.50) 4.66 (1 = −2.05) 3.79 (1 = −2.56)

R2 Density 0.58 (1 = 0.12) 0.66 (1 = 0.14) 0.75 (1 = 0.19)
SWE 0.96 (1 = 0.02) 0.97 (1 = 0.02) 0.98 (1 = 0.02)

the same degraded data sets, our model has consistently 4 %
lower RMSE under parameter transfer when data are avail-
able every two or three days. The two models perform sim-
ilarly when data are available every five days. For weekly
data, our model had 8 % worse RMSE compared to the Jonas
model. The snow depth time series used in this study con-
tained gaps, so the data frequency was not always daily and
the degraded time series potentially less frequent than in-
tended. These gaps in the snow depth inputs also imply that
the statistics reported for our model might improve if data
were available every day.

The number of parameters in our model is higher than in
the Jonas and Sturm models. If the Jonas model is fit on the
same time periods, our model requires two and a half times
the number of parameters. If the Jonas model is applied to
observations available every fifth day and our model to daily
data, our model is handling five times the data and the ex-
tra parameters appear reasonable. Results in Appendix B in-
dicate that perhaps one of our model parameters could be
dropped. However the difficulty of applying our model com-
pared to the Jonas model is not prohibitive. At the other end
of the spectrum, the Sturm model as applied here could be
criticized as too simple, though sufficient when training data
are lacking in space or time.
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5.3 Further improvements and research problems

Several potential improvements to our model were not ex-
plored here. We tune the model monthly and do not explicitly
separate coefficients ofhAvg for snow ablation and accumu-
lation phases, though they are likely different. Alternatively,
we could tune the model more frequently in time. Further,
because the magnitude of change in bulk density depends on
the relative amounts of existing snowpack and accumulation
or ablation, a more detailed model might consider ratios of
anomalies to smoothed depth, though it will require manag-
ing division by zero. A more inventive, different approach to
smoothing could also help distinguish true positive and neg-
ative anomalies.

We have not considered real-time applications. We pre-
sented results using a 21-day moving window to calculate
smoothed snow depth and anomalies centered on a given
date. In real time, this window reaches into the future. We do
not know how well a retrospective window for a given date
would work. It is something worth investigating, though most
applications of SWE (or density) can likely wait 10 days for
an improved estimate.

Widespread application of our daily density model is hin-
dered by the use of local (∼ 70 km) data for fitting model pa-
rameters and deriving the climatology of fit. We have charac-
terized model accuracy/errors only for this scenario. A study
of model sensitivity to proximity of training data, the ef-
fects of physiographics on model parameters, and to predic-
tor variable quality would provide greater context for wider
applications. While measurements of the spatial variability
of snow depth have improved drastically with the advent of
lidar measurement techniques (McCreight et al., 2014), the
spatial variability of bulk density remains poorly understood
(López-Moreno et al., 2013). In this study, we have consid-
ered the spatial variability of density over scales of tens of
kilometers. However, the density observations in this study
come from SNOTEL sites, which have their own kind of ho-
mogeneity when compared to the larger environment. They
are most commonly located in forested, subalpine locations.
Our findings are likely to be more representative of these lo-
cations as opposed to unforested or wind-exposed locations
(e.g., Clow et al., 2012). Transferring parameters derived at
SNOTEL sites to snow depth measurement locations such
as for GPS, which are necessarily unforested and tend to
be at lower elevations, may introduce model bias. Though
some issues related to parameter transfer can be studied with
SNOTEL observations, understanding parameter transfer in
a broader context may require new and physiographically di-
verse time series observations of snow bulk density.

Alternatively, our model might also be explored or ex-
tended using hybrid approaches. Model sensitivity to more
general climatologies similar to those estimated by Borman
et al. (2013) could be investigated. Physical models could
also provide simulated data or climatologies over a wide va-
riety of physiographic conditions. Our statistical model could

be fit to synthetic data to explore its sensitivity or to develop
general-use parameters (e.g., Sturm et al., 2010).

While a strength of our model is the requirement of only
snow depth observations, the associated drawback is that
energy-related processes are not explicitly included via pre-
dictor variables. Energy-related processes explain a large
fraction of bulk density variability at long timescales (e.g.,
Chen et al., 2010) and are only implied via their relationship
with snow depth variability and the climatology of fit. Be-
cause air temperature can be easily measured or estimated
with reasonable accuracy, it seems that the best way to im-
prove our model formulation with additional observations
would involve adding an air (or other) temperature variable.
Research would be required to understand how such obser-
vations would most appropriately modify the current terms.
Successful inclusion of an air temperature predictor in the
model would likely improve transferability of parameters be-
tween physiographically dissimilar locations. Temperature
observations might also be used to constrain changes in den-
sity or SWE to physically realistic scenarios.

6 Conclusions

We developed a model for converting snow depth observa-
tions to bulk density estimates at the daily timescale. Our
model improves the estimation of bulk density and SWE
from daily snow depth, compared to existing approaches that
were not intended for daily application. Our main innova-
tion was separating the short- and long-timescale covariances
between snow depth and density, which are negatively cor-
related at short (10 days) timescales while positively corre-
lated at longer (90 days) timescales. Snow depth variability
at long timescales was modeled using a running mean and
variability at short timescales by observed anomalies from
the mean. A climatology of fit was also included as a pre-
dictor variable. The model exhibited improved statistics and
qualitatively more-realistic behavior under parameter trans-
fer when fitting models to data within a 70 km radius of the
modeled location. The model showed even greater improve-
ments when fit at the modeled location (parameters not trans-
ferred), explaining 75 % of the observed density variability in
632 000 observations. We recommend using the model under
parameter transfer whenever it can be trained to at least three
sites and applied to observations more frequent than one in
five days.
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Appendix A

More detailed empirical relationships between depth and
density

In Fig. 1, we simplified our discussion of depth and den-
sity by focusing on the period from Feb to May. To more
completely characterize the relationship between density and
depth, we reveal the full water years from Fig. 1 in Fig. A1
and divide the snow season into four phases. These are distin-
guished by three vertical, dashed lines in each water year. In
chronological order, we call these phases the early accumu-
lation phase, the main accumulation phase, the main ablation
phase, and the late ablation phase. Figure 1 concentrated on
the main accumulation and ablation phases, which are distin-
guished by peak SWE or snow depth. The early accumulation
phase is characterized by markedly higher variability in den-
sity because the total SWE or depth is still low. Though it
can vary between sites and years, snow depth accumulations
over 50 cm typically mark the end of the early accumulation
phase. The main ablation phase is distinguished from the
late ablation phase by a switch from increasing to constant
(or perhaps decreasing) density. This switch occurs with the
ripening of the snowpack, when it holds a maximum amount
of liquid water. In the example time series (Fig. A1), the early
accumulation constitutes roughly 20 % of the 9-month water
year while the late ablation phases is roughly 5 % of the water
year. The main accumulation and ablation phases represent
approximately 60 and 15 % of the water year, respectively. It
is important to note that we present an example analysis for a
single location in two different years. Different locations and
even different years could have drastically different distribu-
tions of these snow phases. Sites with ephemeral snowpack
may not have main accumulation or main ablation phases.
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Fig. A1. Data from the Lake Irene SNOTEL site in northern Colorado. Both water years are separated into 4 phases by vertical dashed lines:
early accumulation, main accumulation, main ablation, and late ablation.

Short-timescale correlations between depth and density
are negative in all phases, as discussed in Sect. 2.1. Wild
density variability in the early accumulation phase makes it
hard to characterize its long-timescale correlation with depth.
However it is often negative because there are larger ob-
served densities (after melt) for lower observed depths, so
the time-averaged average density decreases with increasing
depth during this period. Depth and density are positively and
negatively correlated during the main accumulation and abla-
tion phases, respectively, as described in Sect. 2.1. In the late
ablation phase, depth and density are positively correlated;
they decrease simultaneously over long timescales.
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Appendix B

Model selection

In the methodology section, we developed new predictors for
use in regression modeling and we justified our choice of
the full model as presented in Eq. (3). However, between the
Jonas et al. (2009) and our full model, a range of intermedi-
ate models exist, using various combinations of the available
predictors from the two models. In this appendix we examine
the performance of these intermediate models.

The full set of predictors we consider are intercept,snow
depth (h), smoothed snow depth (hAvg), observed anoma-
lies from smoothed snow depth (hAvgDiff), positive and neg-
ative anomalies from smoothed snow depth (hAbove and
hBelow), and density climatology of fit (ρclim). The time se-
ries of anomalies,hAvgDiff, is calculated ash − hAvg. It
is not split into positive and negative anomalies, as is the
case forhAbove andhBelow. ThehAvgDiff term was not
included in Eq. (3), or in the analyses in the main part of the
paper. Figure B1 compares the Jonas and Sturm models with
models of intermediate complexity. Models are evaluated us-
ing RMSE under parameter transfer over the entire data set.
The figure shows RMSE as a function ofW , the number of
days used to compute average snow depth and its associated
anomalies. The Sturm and Jonas models are independent of
W , as is the Jonas model with the addition of the density cli-
matology of fit,ρclim. The Jonas model has a smaller set of
residuals (RMSE) than the Sturm model, and the addition of
the climatology of fit predictor improves the Jonas model.
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Fig. B1.Comparison of model RMSE in density (over all observations) under parameter transfer as a function of window size for computing
the running mean of snow depth predictorhAvg and the associated predictorshAvgDiff (all anomalies),hAbove (positive anomalies), and
hBelow (negative anomalies).ρclim is the daily density climatology of fitting data predictor.

The remaining models (grey and red) involve windowed
average snow depth (hAvg) and depend on the window size.
The figure reveals that the full model, shown in red, improves
upon all intermediate models (shown in grey and differenti-
ated with symbols) for window sizes greater than 17 days.
The full model dropping thehBelow term is competitive for
shorter averaging windows, but the RMSE of the full model
is lower for averaging windows greater than 17 days. The full
model shows improvement over the models which do not in-
volve averaging snow depth: Sturm, Jonas, and Jonas:ρclim.
As stated in the results, the RMSE improvements over Sturm
and Jonas are 9.9 and 4.5 %, respectively (24 and 17.4 %
around peak SWE). Figure B1 also reveals that the full model
(red) is not sensitive to choice of averaging period when more
than 17 days are used. While the figure indicates the impor-
tance of the individual predictors, it is important to realize
that this is specific to our experimental design. The relative
influence of the predictors may change under different pa-
rameter transfer scenarios.
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