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Effects of Near-Surface Soil Moisture on GPS
SNR Data: Development of a Retrieval

Algorithm for Soil Moisture
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Abstract—Global Positioning System (GPS) multipath signals
can be used to infer volumetric soil moisture around a GPS an-
tenna. While most GPS users concentrate on the signal that travels
directly from the satellite to the antenna, the signal that is reflected
by nearby surfaces contains information about the environment
surrounding the antenna. The interference between the direct
and reflected signals produces a modulation that can be observed
in temporal variations of the signal-to-noise ratio (SNR) data
recorded by the GPS receiver. Changes in the dielectric constant
of the soil, which are associated with fluctuations in soil moisture,
affect the effective reflector height, amplitude, and phase of the
multipath modulation. Empirical studies have shown that these
changes in SNR data are correlated with near-surface volumetric
soil moisture. This study uses an electrodynamic single-scattering
forward model to test the empirical relationships observed in
field data. All three GPS interferogram metrics (effective reflector
height, phase, and amplitude) are affected by soil moisture in
the top 5 cm of the soil; surface soil moisture (< 1-cm depth)
exerts the strongest control. Soil type exerts a negligible impact
on the relationships between GPS interferogram metrics and soil
moisture. Phase is linearly correlated with surface soil moisture.
The slope of the relationship is similar to that observed in field
data. Amplitude and effective reflector height are also affected
by soil moisture, although the relationship is nonlinear. Phase is
the best metric derived from GPS data to use as a proxy for soil
moisture variations.

Index Terms—Global Positioning System (GPS), radar, reflec-
tometry, remote sensing, soil.

I. INTRODUCTION

N EAR-surface soil moisture has been the subject of numer-
ous climate and land surface–atmosphere studies [1]–[3].

Soil moisture affects precipitation [4] via the partitioning of
energy between the land and the atmosphere into sensible and
latent heat fluxes [5].
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Global Positioning System (GPS) Interferometric Reflectom-
etry (GPS-IR) is a bistatic radar remote sensing technique that
could improve knowledge of near-surface soil moisture as well
as other environmental variables [6]–[8]. Signals transmitted
from GPS satellites are in the L-band microwave region (∼1.2
and 1.5 GHz) and penetrate further into the ground than signals
of instruments using higher frequency bands [9]. Several stud-
ies have shown that GPS instruments can be used to infer soil
moisture using information contained in the ground-reflected
or multipath signal [10], [11]. However, the antennas in these
studies have been altered in some way, either by making them
more sensitive to multipath [12], [13] or by changing their
orientation from the zenith-directed orientation used in GPS
networks. These changes enhance the multipath signal. These
studies also relied on receivers that were particularly designed
for multipath measurements rather than commercial off-the-
shelf instruments.

Recently, it has been shown that GPS instruments devel-
oped for tectonic studies and land surveying (here called
geodetic-quality GPS instruments) are also highly sensitive to
soil moisture in the top 5 cm of soil [14], [15]. A previous
study by Zavorotny et al. [16] showed that an electrodynamic
single-scattering forward model for typical soil moisture con-
ditions produced qualitative changes in simulated GPS data
that were consistent with the field observations. However,
Zavorotny et al. [16] did not attempt to develop a retrieval
algorithm to estimate soil moisture from GPS data. The aim
of this study is to provide the theoretical basis for such an
algorithm. This would allow GPS data collected with geodetic-
quality instruments to be used to validate L-band soil moisture
satellites such as Soil Moisture and Ocean Salinity (SMOS)
[17] and Soil Moisture Active Passive (SMAP) [18]. We will
first briefly review the characteristics of the observations and
the model that will be used in this study, followed by an
evaluation of different simulations.

II. GPS DATA

A geodetic-quality GPS antenna receives energy from both
the direct and ground-reflected signals (Fig. 1). Although dom-
inated by the much stronger direct signal, the interference
between the direct and reflected signals is also measurable.
GPS receivers can be used to observe soil moisture variations
because the dielectric constant of the ground is primarily a func-
tion of the soil moisture content [19]. This causes a change in
the complex surface reflection coefficient and, hence, a change
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Fig. 1. (From [25]) Geometry of a multipath signal, for antenna height (Ho)
and satellite elevation angle (θ). Bold black lines represent the direct signal
transmitted from the satellite. The gray line is the reflected signal from the
ground. The antenna’s phase center is shown as the small dot. The solid line
represents the gain pattern of the antenna. The radial distance between the
antenna phase center and the solid line represents the strength of the antenna
gain. Thus, an elevation angle of 90◦ has an antenna gain that is ∼40% stronger
than that for an elevation angle of 0◦.

in the interference pattern observed in GPS data. Unlike air-
plane or satellite reflection experiments, ground GPS receivers
observe a coherent interference pattern. The variations in the
interference patterns result from a complex interaction between
reflection coefficients and the antenna gain pattern, both of
which vary with elevation angle. Given these complications,
forward model simulations are the only practical way to guide
development of a retrieval algorithm.

The effects of multipath in geodetic-quality GPS receivers
can be observed in engineering data that measure the ratio of
the signal power to the noise power spectral density or, simply,
signal-to-noise ratio (SNR) data. A typical time series of SNR
data from a GPS receiver is shown in Fig. 2(a). The slow
change from 35 to 45 dB · Hz is due to the direct signal. The
oscillations superimposed on the direct signal are caused by
multipath signals reflected off the ground.

The geodetic community uses an entirely geometric de-
scription for observations of GPS multipath. With very few
exceptions, the goal for these researchers has been to identify
and remove the multipath effects [21]–[24]. For soil moisture
sensing, the direct signal is not of interest and is typically
removed with a low-order polynomial, leaving the SNR obser-
vations as shown in Fig. 2(b). We refer to SNR data where the
direct signal effect has been removed as SNRmpi, the subscript
(multipath interference) indicating that variations are the result
of interference between the reflected and direct signals. Geode-
sists use this expression to summarize how SNRmpi varies with
elevation angle [Fig. 2(c)]

SNRmpi = Ampi cos

(
4πHo

λ
sin θ + φmpi

)
(1)

where Ampi scales with the intensity of ground reflections, θ is
the satellite elevation angle (90◦ being defined as zenith), φmpi

is phase, λ is the GPS signal wavelength, and Ho is the antenna
height [14]. This expression shows no direct dependence on soil
moisture or dielectric properties of the ground, although field

Fig. 2. (a) Observed SNR data from a geodetic-quality GPS receiver.
(b) Same SNR interferogram from (a) that has had the direct component
removed with a low-order polynomial and converted from decibel-hertz to a
linear scale. (c) Best-fit approximation of the data from panel (b) using (1).
(d) Two multipath modulations generated from the electrodynamic model. The
dashed line represents a modulation resulting from wet soil; the solid line
represents a modulation from a dry soil.

observations indicate that both Ampi and φmpi vary with soil
moisture [14], [15]. The amplitude term includes the influence
of both the gain pattern and multipath intensity. Although both
antenna gain and multipath intensity vary with θ, the variation
of Ampi with θ is not large. Thus, as in previous analyses
of SNRmpi data, we assume that Ampi does not vary with θ
[25]. Temporal fluctuations in Ampi should depend only on the
wetting of the soil, as the gain pattern itself does not change
from day to day. Larson et al. showed that a correlation exists
between Ampi and rain events [25]. However, the observed
effects of shallow soil moisture variations on φmpi are larger
than those on Ampi, as demonstrated by [14]. The forward
model simulations of Zavorotny et al. [16] were consistent with
these observations.

Larson et al. [15] explored an alternative approach for ana-
lyzing the changes in SNRmpi resulting from soil moisture fluc-
tuations. The frequency of multipath modulations fm present in
SNRmpi data [e.g., Fig. 2(b)] varies with reflection characteris-
tics [26]. fm is related to the effective reflector height Heff

Heff =
1

2
fmλ. (2)

Field observations show that Heff varies with soil moisture
fluctuations [15]. As with Ampi and φmpi, the model results of
Zavorotny et al. qualitatively supported these observations.

In the next section, we use the model of Zavorotny et al. [16]
to develop a GPS soil moisture retrieval algorithm for a bare
soil. For a given Ho, we quantify the variations in Ampi and
φmpi resulting from soil moisture fluctuations. We also quantify
variations in Heff that result from soil moisture fluctuations.

III. METHODS

A. Forward Model and GPS Metric Definitions

1) Model Description and Development: The key points of
the GPS simulator developed in [16] are that it fully represents
the polarimetric characteristics of both the direct and reflected
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GPS signals as they would be measured by geodetic-quality
GPS antennas and receivers. The transmitted power from
the GPS satellites to the Earth is primarily right-handed circu-
larly polarized, as defined in [27], although upon reflection, part
of the signal is converted to left-handed. The simulator then
computes how much power would be received via the direct
and the reflected signal path. Both left-handed and right-handed
signals are fully defined in this simulator. To do so, the simula-
tor uses a gain pattern for a geodetic-quality antenna measured
in an anechoic chamber. The reflected signal is determined
by the reflection characteristics (polarization and reflection
coefficients) calculated over a 20-cm soil column stratified into
1-mm-thick layers. The simulator was not developed specif-
ically for soil moisture applications, i.e., it could be used to
investigate reflections from any stratified medium.

To calculate the reflection coefficients of the soil, volumetric
soil moisture values were first converted to dielectric con-
stants using relationships given in [19]. These relationships
were derived from a semiempirical dielectric mixing model
based on experimental observations and knowledge of how soil
water should respond to an induced electric field [19]. The
resulting dielectric constants were then converted to reflection
coefficients using the small-perturbation method for a layered
medium with permittivity variations [28]. Reflection coeffi-
cients were combined with a specified antenna radiation pattern
to produce the SNRmpi interferograms. Examples of SNRmpi

curves produced by the model for a dry and wet soil moisture
profile are shown in Fig. 2(d).

2) Model Parameters: In this paper, we have restricted the
analysis for satellite elevation angles between 5◦ and 30◦ (data
below elevation angles of 5◦ are often obstructed by buildings
and trees). These are the elevation angles most impacted by
multipath—which is why they have been used in previous
studies [14], [15]. The antenna was set to be 2.4 m above
the ground, similar to many field installations. We varied the
antenna height from 1 to 3 m to quantify the sensitivity of
SNRmpi to this parameter. The GPS signal was set to have a
wavelength of ∼24.4 cm, the wavelength for L2 civil signals
used in previous GPS-IR applications [14], [15].

Environmental parameters were purposefully simplified so
that the effect of soil moisture on SNRmpi data could be exam-
ined without complications from other factors, i.e., data were
simulated for an area with no topography, surface roughness, or
vegetation. Although we tested five soil textures, we will focus
on results for a soil with a loamy texture.

3) Calculation of GPS SNRmpi Metrics: Three GPS metrics
are discussed in this paper. Least squares estimation was used
to determine φmpi and Ampi from the simulated SNRmpi data,
for the specified Ho. Note that, by setting Ho, the frequency of
the SNRmpi interferogram is constant. The values of φmpi were
zeroed with respect to the minimum phase value simulated,
i.e., phase values that ranged from 200◦ to 230◦ are reported
here as 0◦–30◦.

Separately, an effective reflector height (Heff) was calcu-
lated from the simulated SNRmpi data using a Lomb–Scargle
periodogram [20], a method of least squares spectral analysis
that calculates the spectral power for a range of frequencies.
The frequency with the greatest power is then converted to

Fig. 3. Simulated soil moisture profiles. Only the top 7 cm of the profiles is
shown, as soil moisture values were constant below 5-cm depth.

Heff using (2). In all the simulations discussed as follows,
Heff is within several centimeters of Ho. An oversampling
parameter was used in the Lomb–Scargle periodogram that
allowed this metric to be estimated with a precision of 0.3 cm.
For simplicity, we will refer to φmpi, Ampi, and Heff as GPS
interferogram metrics.

B. Soil Moisture Profiles

1) Constant Profiles and Simple Wetting and Drying Pro-
files: We first calculated GPS interferogram metrics for soil
profiles with uniform soil moisture throughout a 20-cm mod-
eled domain. The soil moisture profiles were discretized to have
soil layers that were 1 mm thick. We report our results as volu-
metric soil moisture, meaning the fraction of the total volume of
a soil layer filled with water (0–1.0). For the uniform soil profile
simulations, we varied volumetric soil moisture values from
0.01 to 0.50. Although it is unlikely that the loam soil modeled
in this study would have a residual water content of 0.01, we
extended our analysis to this value to test the full range of
possible relationships between GPS metrics and soil moisture.

We also constructed simple soil moisture profiles with the
same 20-cm domain and 1-mm vertical discretization for cases
when the surface soil is wetter and dryer than the soil as
follows (Fig. 3). In these profiles, soil moisture was constant
below 5 cm. The model was also run with soil profiles that had
moisture variations with depth down to 10 cm, but no signif-
icant differences were found compared with results from the
aforementioned profiles. It was thus deemed reasonable to keep
soil moisture values constant below 5-cm depth. For profiles
that vary with depth, the surface volumetric soil moisture value
is denoted as SM0, and the average volumetric soil moisture
value for the top 5 cm of soil is denoted as SM0−5.

2) Field Data: We used soil moisture data from an unirri-
gated agricultural wheat field to provide a representation of a
set of realistic soil moisture profiles. The data used to generate
these profiles were collected using 11 Campbell Scientific 616
water content reflectometers: Five were buried at a depth of
2.5 cm, five were buried at a depth of 7.5 cm, and one was
buried at a depth of 20 cm. Over 230 consecutive days of data
were used to provide soil moisture profiles for the model.

We used the reflectometer data as point measurements of soil
moisture at the installation depth. However, the geometry of
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Fig. 4. Interpolated soil moisture profiles, given three point measurements at
(horizontal lines) 2.5, 7.5, and 20 cm.

CS616 probes actually yields a measurement that integrates
soil moisture over a depth of approximately 5 cm [29]. We
also used the factory calibration for the soil moisture probes,
even though a calibration developed specifically for the soil at
the site should yield more accurate volumetric soil moisture
values. Neither of these issues is a source of error in our study
because we did not attempt to compare simulated SNR data
to actual SNR data collected from this field. These data were
only used to provide guidance on the type and extent of soil
moisture profiles that could potentially exist in field settings.
We constructed profiles from these point measurements using
a piecewise cubic Hermite method to interpolate data between
the measurement depths (Fig. 4). The interpolation of these
measurements does not exactly match the profiles that exist in
the field but was useful in determining common soil moisture
gradients that exist within the soil column. More sophisticated
physically based modeling or other retrieval algorithms could
be used to simulate near-surface soil moisture as in [30], but
this was beyond the scope of this study. Only the relationship
between soil moisture and φmpi will be shown for these profiles;
relationships were similar for the other metrics.

IV. RESULTS

A. Relationships Between GPS Metrics and Soil
Moisture Profiles

1) Phase: Given uniform soil moisture profiles, φmpi ex-
hibits a positive and nearly linear relationship with volumetric
soil moisture (Fig. 5). Phase varies by 30◦ over the range of dry
to wet uniform soil moisture profiles that we tested. The slope
of this relationship or the sensitivity of φmpi to uniform soil
moisture is 65.1◦ · cm3 · cm−3. This means that a 20◦ change
in φmpi would correspond to a 0.31 change in volumetric soil
moisture. This relationship is the same regardless of soil type
and does not depend on the height of the antenna Ho (Table I).

For soil moisture profiles that vary with depth, φmpi does
not vary consistently with SM0−5. Fig. 5 shows the relationship
between SM0−5 and φmpi for a variety of different soil moisture
profiles, a subset of which is depicted in the inset. The subsets
of profiles, labeled a–k in the figure, all have the same surface
volumetric soil moisture (0.15). However, the volumetric soil
moisture beneath the surface may be lower (profiles a–c) or
higher (e–k) than that at the surface. As a result, these profiles
have different values of SM0−5. As can be seen in the figure,

Fig. 5. Relationship between phase φmpi and volumetric soil moisture aver-
aged over the top 5 cm SM0−5. The unmarked line indicates results for profiles
in which soil moisture did not vary with depth. For these cases, the surface
soil moisture is equal to SM0−5. Other data are grouped by the value of soil
moisture at the surface SM0 (lines with symbols). Within each group, each
point corresponds to one profile in Fig. 3. The inset provides an example of one
group of profiles with the same surface soil moisture (0.15), taken from Fig. 3.

TABLE I
SLOPES AND r2 VALUES FOR LINEAR REGRESSIONS OF SOIL MOISTURE

AND PHASE USING DIFFERENT SOIL TYPES FOR Ho = 2.4 m. VALUES

FOR LOAM SOIL WITH Ho = 1.0 m AND Ho = 3.0 m ARE ALSO SHOWN.
LINEAR REGRESSIONS ARE FOR UNIFORM SOIL MOISTURE PROFILES.

RESULTS INDICATE THAT THE RELATIONSHIP BETWEEN SOIL

MOISTURE AND PHASE IS SIMILAR REGARDLESS OF SOIL TYPE

the relationship between SM0−5 and φmpi for these profiles is
not linear, and the slope is much smaller than that for uniform
moisture profiles. This is true for the other groups of profiles
that have moisture variations over depth. φmpi for these profiles
appears to depend predominantly on the surface soil moisture
value and not strongly on SM0−5.

2) Amplitude: For uniform soil moisture profiles, soil mois-
ture and Ampi have a linear inverse relationship (Fig. 6). This
relationship does not hold when the soil moisture is below 0.10.
For these dry values, Ampi does not respond significantly to soil
moisture changes.

For moisture profiles that vary with depth, SM0−5 and Ampi

are either positively related or unrelated, depending on the
value of the surface soil moisture. This is in contrast to the
linear inverse relationship that exists between uniform moisture
profiles and amplitude. For the nonuniform moisture profiles
that have relatively wet SM0 values (asterisks or squares in
Fig. 6), Ampi does not vary with SM0−5. For the profiles with
lower SM0 (circles or “x”s in Fig. 6), Ampi is positively related
to SM0−5. As is the case for φmpi, it appears that amplitude also
depends primarily on surface soil moisture, not on SM0−5.
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Fig. 6. Relationship between amplitude Ampi and soil moisture averaged
over the top 5 cm SM0−5. The unmarked line indicates results for profiles
in which soil moisture did not vary with depth. Other data are grouped by the
value of soil moisture at the surface, as in Fig. 5 (lines with symbols).

Fig. 7. Relationship between effective reflector height Heff and volumetric
soil moisture averaged over the top 5 cm SM0−5. The unmarked line indicates
results for profiles in which soil moisture did not vary with depth. Other data
are grouped by the value of soil moisture at the surface, as in Fig. 5 (lines with
symbols).

3) Effective Reflector Height: For uniform moisture pro-
files, as the soil becomes wetter, the height estimated from
the Lomb–Scargle periodogram (Heff) decreases (Fig. 7). The
variation in Heff is approximately 3.3 cm for the range of soil
moisture values tested.

As with both φmpi and Ampi, once soil moisture profiles
are allowed to vary with depth, the dependence of Heff on
SM0−5 is neither strong nor consistent. As is seen in Fig. 7,
Heff varies by < 1 cm with SM0−5 for moisture profiles that
vary with depth. Thus, Heff appears to be primarily influenced
by SM0. The millimeter differences in Heff that result from
moisture variations at depth would be difficult to distinguish
in field measurements. However, the centimeter-level changes
between uniform wet and dry profiles should be observable, as
previously shown by [14] and [15].

B. Field Profiles and Phase

In this section, we present results from SNRmpi data that
were simulated using soil moisture profiles interpolated from
field data (see Fig. 4 for interpolated moisture profiles). SM0

and φmpi have a near-perfect correlation with an r2 value of
0.997 (Fig. 8) despite the wide range of soil moisture profiles

Fig. 8. Relationship between phase φmpi and volumetric soil moisture inter-
polated from field data. Solid dots correspond to surface soil moisture SM0

extrapolated from field measurements at 2.5- and 7.5-cm depths. The plus (+)
signs correspond to soil moisture, averaged over the top 5 cm of the interpolated
field profiles SM0−5. The solid line is the relationship between phase and soil
moisture for profiles that do not vary with depth, as in Fig. 5.

tested. This indicates that φmpi is highly dependent on changes
in surface soil moisture. The correlation between φmpi and
SM0−5 is still excellent (r2 = 0.91) (Fig. 8). However, some of
this correlation is the result of the covariance between SM0−5

and SM0 rather than the effects of soil moisture at depth on
SNRmpi. Soil moisture at 0 cm was extrapolated from the value
measured at 2.5 cm using the gradient measured at depths of
2.5 and 7.5 cm. Thus, the predicted SM0 was always tightly
coupled with this gradient. The covariance between SM0 and
the soil moisture at deeper depths may not be as strong in the
field. Nearly all of the interpolated profiles have dryer soil at
the surface than at depth. Therefore, each φmpi − SM0−5 point
plots to the right of the corresponding φmpi − SM0 point. This
is consistent with the results shown in Fig. 5 (e.g., points e–k),
for cases when the soil is drier at the surface than at depth.
Ampi and Heff have similar correlations with the soil mois-

ture profiles that were interpolated from field measurements.
The r2 value for the correlation between Ampi and SM0 is
0.81, and its value is 0.63 for the correlation between Ampi

and SM0−5. The smaller r2 (compared to that for φmpi and soil
moisture) is expected, given the complex relationship between
Ampi and soil moisture (Fig. 6). The r2 value for the correlation
between Heff and SM0 is 0.97; between Heff and SM0−5,
it is 0.86.

V. DISCUSSION

Field observations indicate that φmpi and soil moisture have
a linear relationship with a slope of 65.1◦ · cm3 · cm−3. The
simulated results presented in this paper agree with empiri-
cal findings (Fig. 9). However, the slope of the relationship
between φmpi and soil moisture is ∼20% greater in the field
observations than that produced by the model. There are two
possible reasons for this discrepancy. First, the in situ probes
provided an estimate of SM0−5, whereas the φmpi measured
in the field is more directly related to SM0 [15]. Second, the
field observations were not from sites completely devoid of
vegetation, and vegetation may change the sensitivity of φmpi

to soil moisture.
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Fig. 9. (Left) Results from [15] that show the empirical relationship be-
tween phase and volumetric soil moisture from a field site in Marshall, CO.
(Right) Results from a field site in Oklahoma that show a similar relationship
between phase and volumetric soil moisture. In both cases, the field measure-
ments of soil moisture represent an approximate average over the top 5 cm of
the soil profiles [15].

It is well known that L-band signals penetrate further into
soils that are dry than soils that are wet [31]. It is possible
to calculate the effective penetration depth, which is usually
defined as the depth at which the signal’s power has been
attenuated to 1/e of its value at the soil surface [31]. For passive
L-band remote sensing, this depth varies from 0.1 to 1 m,
depending on whether the soil is wet or dry [31].

This definition of penetration depth, however, is not appro-
priate for defining the depth of soil that significantly affects
SNRmpi. The signal may penetrate to this depth in the soil.
However, this does not mean that a significant portion of the
signal returns back through the soil surface to the antenna. In
addition, SNRmpi depends not only upon the depth at which
the wave was reflected but also on the dielectric properties of
the soil. Other studies have also addressed this issue [31], [32].
The term for the region of soil that affects the overall signal is
sometimes referred to as the “moisture sensing depth” and is
often taken to be one-tenth of a wavelength in the soil, which
corresponds to less than 2 cm for L-band [31].

Fig. 8 indicates that the surface soil moisture value is the
determining factor in φmpi. This is to be expected, since low
elevation angles have higher surface reflection coefficients than
higher angles [28]. It appears that the observed correlations
between φmpi and soil moisture averaged over the top 5 cm of
soil, like those shown in Fig. 8, result from a combination of the
following: 1) strong covariance between SM0 and soil moisture
at 2.5 cm and 2) soil moisture at deeper depths affecting the
overall signal. Although the relative contributions of these two
factors were not quantitatively compared, our results show that
the correlation between SM0 and soil moisture at 2.5 cm is the
driving factor in the correlation between the GPS interferogram
metrics Ampi, Heff , and φmpi and SM0−5. It is possible that
other aspects of the SNR interferogram besides Ampi, Heff , and
φmpi are affected by soil moisture at depth. The investigation
into what those aspects might be, however, was outside the
scope of this study.

VI. CONCLUSION

The physical model used in this study indicates that phase
(φmpi), amplitude (Ampi), and effective reflector height (Heff)
derived from simulated SNRmpi data are sensitive to changes
in soil moisture. φmpi is linearly correlated with volumetric soil
moisture, which is consistent with previously published field

observations. The slope from the simulated data is similar to
that observed at two field sites. Ampi and Heff also vary with
soil moisture, although these relationships are not as straight-
forward as that for φmpi. Thus, φmpi is the best estimator of
soil moisture change for bare soil conditions. All three GPS
interferogram metrics are most sensitive to changes in surface
soil moisture, compared to soil moisture averaged over the
top 5 cm of the soil column. The slope estimated from these
simulations can be used in a retrieval algorithm to convert φmpi

observations into volumetric soil moisture. A comprehensive
retrieval should also include the effects of surface roughness,
vegetation, and soil temperature. These variables should be
included in future modeling efforts in order to determine their
effect on GPS interferogram metrics.
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