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Abstract Aridland ecosystems are predicted to be

responsive to both increases and decreases in precipitation.

In addition, chronic droughts may contribute to encroach-

ment of native C3 shrubs into C4-dominated grasslands. We

conducted a long-term rainfall manipulation experiment in

native grassland, shrubland and the grass–shrub ecotone in

the northern Chihuahuan Desert, USA. We evaluated the

effects of 5 years of experimental drought and 4 years of

water addition on plant community structure and dynamics.

We assessed the effects of altered rainfall regimes on the

abundance of dominant species as well as on species

richness and subdominant grasses, forbs and shrubs. Non-

metric multidimensional scaling and MANOVA were used

to quantify changes in species composition in response to

chronic addition or reduction of rainfall. We found that

drought consistently and strongly decreased cover of

Bouteloua eriopoda, the dominant C4 grass in this system,

whereas water addition slightly increased cover, with little

variation between years. In contrast, neither chronic

drought nor increased rainfall had consistent effects on the

cover of Larrea tridentata, the dominant C3 shrub. Species

richness declined in shrub-dominated vegetation in

response to drought whereas richness increased or was

unaffected by water addition or drought in mixed- and

grass-dominated vegetation. Cover of subdominant shrubs,

grasses and forbs changed significantly over time, primar-

ily in response to interannual rainfall variability more so

than to our experimental rainfall treatments. Nevertheless,

drought and water addition shifted the species composition

of plant communities in all three vegetation types. Overall,

we found that B. eriopoda responded strongly to drought

and less so to irrigation, whereas L. tridentata showed

limited response to either treatment. The strong decline in

grass cover and the resistance of shrub cover to rainfall

reduction suggest that chronic drought may be a key factor

promoting shrub dominance during encroachment into

desert grassland.

Keywords Bouteloua eriopoda � Climate change �
Drought � Forbs � Larrea tridentata � Plant community

structure � Species richness � Water addition

Introduction

Climate change is expected to alter patterns of seasonal and

annual precipitation locally, regionally and globally (IPCC

2007). In southwestern North America, climate models

predict that annual precipitation inputs are likely to

Communicated by Susanne Schwinning.

Electronic supplementary material The online version of this
article (doi:10.1007/s00442-012-2552-0) contains supplementary
material, which is available to authorized users.

S. Báez
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decrease, leading to more frequent, prolonged, and extreme

regional droughts especially during La Niña periods

(Seager et al. 2007; Schoof et al. 2010; Gutzler and

Robbins 2010). Water availability is the most critical factor

regulating biological activity in aridland ecosystems

(Whitford 2002; Reynolds et al. 2004; Schwinning and

Sala 2004). For example, summer and winter rainfall affect

species diversity (Chesson et al. 2004), net primary pro-

ductivity (Knapp and Smith 2001; Muldavin et al. 2008),

abundance of consumers (Brown and Ernest 2002; Yates

et al. 2002; Friggens 2003; Báez et al. 2006), and cycling

of carbon and nutrients (Austin et al. 2004; Huxman et al.

2004; White et al. 2004; Vargas et al. 2012; Dijkstra et al.

2012). Thus, changes in precipitation patterns are likely to

have profound consequences for community structure and

ecosystem functioning in arid and semiarid ecosystems.

Empirical studies demonstrate that aridland ecosystems

may respond rapidly to seasonal and annual changes in

precipitation (Sternberg et al. 1999; Lloret et al. 2004;

Pennington and Collins 2007; Peñuelas et al. 2007). In arid

and semiarid ecosystems, net primary production (NPP)

responds more strongly to increased precipitation than to

drought, as plants in these systems are adapted to avoid or

tolerate drought (Knapp and Smith 2001; Gerten et al.

2008). However, this NPP response to altered precipita-

tion regimes depends considerably on plant community

structure, species composition and functional diversity

(Reynolds et al. 2004; Collins et al. 2008; Gerten et al.

2008; Suding et al. 2008). Indeed, empirical studies indi-

cate that species diversity can enhance community resis-

tance to drought (Lloret et al. 2007). Drought, in turn, can

act as an ecological filter that governs species composition

(Chase 2007) and diversity (Lloret et al. 2004). For

example, long-term water addition in grasslands either

increased (Yang et al. 2011) or had little consistent effect

on species diversity (Collins et al. 2012). Because plant

species composition and functional diversity are critical to

maintain processes such as NPP under changing climate

(Chapin et al. 1997; Tilman 1999), forecasting the effects

of altered precipitation in aridland ecosystems requires

understanding how species, plant community structure, and

plant functional types will respond to chronic drought or

increases in annual precipitation.

Plant functional traits (e.g., annual/perennial, grass/forb,

C3/C4) are generally good predictors of how species will

respond to disturbances, including changes in the amount

of precipitation (Knapp et al. 2002; Zavaleta et al. 2003;

Wahren et al. 2005, Suding et al. 2008). Studies using long-

term observations and rainfall manipulations indicate that

chronic changes in rainfall regimes often lead to non-linear

and unexpected responses in plant community and func-

tional diversity (Harpole et al. 2007; Suttle et al. 2007). For

example, Cleland et al. (in review) found that species

richness was positively related to interannual variation in

seasonal precipitation depending on the proportion of

annual species in the species pool. However, richness

responses may mask functional dynamics in that cover of

grasses, for example, may respond more strongly to

drought than to increased precipitation, whereas annuals

may do the opposite (Knapp and Smith 2001; Harpole et al.

2007; Suttle et al. 2007). Thus, generalizations about

response dynamics in these systems remain nebulous.

In addition to climate change, aridland ecosystems are

undergoing a state transition from C4-dominated grasslands

to C3-dominated shrublands (Van Auken 2009). In the

southwestern US, for example, Larrea tridentata now

dominates nearly 19 million ha of former grassland (Van

Auken 2000). The replacement of C4 grasses by C3 native

shrubs alters carbon storage and net primary production

(Jackson et al. 2002; Knapp et al. 2008; Eldridge et al.

2011), modifies hydrological function (Bhark and Small

2003; Ravi et al. 2007; Turnbull et al. 2010a), and

enhances loss of biodiversity (Báez and Collins 2008;

Ratajczak et al. 2012) and soil fertility (Huenneke et al.

2002; Ravi et al. 2010; Turnbull et al. 2010b). Although

shrub encroachment likely results from multiple interacting

factors (Van Auken 2000, 2009), one potential driver of

this state transition is climate variability (Brown et al.

1997; Van Auken 2009). Indeed, studies have shown that

production in areas dominated by L. tridentata is more

stable (Muldavin et al. 2008; Xia et al. 2010) while com-

positional variability is less stable than in grass-dominated

areas (Báez and Collins 2008). Thus, understanding how

rainfall variability affects ecosystem state transitions is

critical to forecast large-scale changes in grass and shrub

composition and abundance under future climate scenarios.

In general, precipitation inputs define, to a large extent,

soil moisture availability and species abundances in arid-

land ecosystems (Reynolds et al. 2004; Muldavin et al.

2008; Collins et al. 2008). Thus, plant community com-

position and structure are likely to be highly sensitive to

both increases and decreases in growing season rainfall

(Knapp and Smith 2001; Diffenbaugh et al. 2008). To

determine how altered rainfall regimes affected aridland

vegetation across a grassland to shrubland transition zone,

we experimentally increased annual precipitation by 42 %

of the long-term average over 4 years, or decreased pre-

cipitation by 50 % of ambient rainfall over 5 years in three

vegetation types in the northern Chihuahuan Desert: creo-

sotebush (Larrea tridentata) shrubland, black grama

(Bouteloua eriopoda) grassland, and mixed vegetation at

the grass–shrub ecotone. Because water is the primarily

limiting resource in aridland systems, we hypothesized

(1) that cover of dominant and subordinate species would

increase over time with chronic water addition and

decrease over time under chronic drought in all three
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community types, (2) species richness would increase with

chronic water addition and decrease with chronic drought,

and that the decrease in richness would be greatest in shrub

dominated vegetation, and (3) as a consequence of (1) and

(2), we hypothesized that plant community composition

would differ among rainfall treatments within each of the

three vegetation types.

Materials and methods

Study area

This study was conducted at the Sevilleta National Wild-

life Refuge (SNWR) in central New Mexico, USA. The

SNWR lies at the northern end of the Chihuahuan Desert

(Kroel-Dulay et al. 2004) where a distinct transition zone

occurs between desert grassland dominated by Bouteloua

eriopoda (black grama) and shrubland dominated by Larrea

tridentata. Other common plant species at this site include

Muhlenbergia arenicola, Aristida purpurea, Sporobolus

spp., Guttierezia sarothrae, and Sphaeralcea wrightii.

Spatial and temporal variability in precipitation is high

at the SNWR, both among seasons and years (Pennington

and Collins 2007; Notaro et al. 2010). As a consequence of

scarce water inputs, annual aboveground net primary pro-

duction is low ranging from 50 to 200 g m-2 (Xia et al.

2010). The SNWR receives an average of 250 mm of

precipitation annually, 60 % of which occurs from July

through September (Gosz et al. 1995). Average annual

temperature is 13.2 �C, with a low of 1.6 �C in January and

average high of 25.4 �C in July.

Experimental design

We conducted two rainfall manipulation experiments

between 2002 and 2008 in L. tridentata shrubland, B. erio-

poda grassland, and the grass–shrub ecotone at the SNWR.

In each vegetation type, we established three blocks, within

50 m of each other, which contained three experimental

10 9 15 m plots, for a total of 27 plots. Each block con-

tained one replicate of ambient, drought, and increased

rainfall treatments, for a total of three replicates of each

treatment at each site. Grassland, ecotone, and shrubland

sites were less than 2 kilometers apart.

For the drought treatments, rainout shelters were con-

structed consisting of movable roofs that slid diagonally

along rollers to cover each plot. Shelters were deployed

periodically throughout the growing season (April–

November) to achieve a decrease of approximately 50 % of

annual inputs based on ambient rainfall measured with

tipping bucket gauges at the grassland and shrubland sites.

Because rainout shelters covered the sampling plots only

during rain events, their effects on other environmental

variables (i.e., light, temperature) were minimal. Water

addition treatment plots received ambient precipitation plus

five 21 mm rainfall addition treatments (total added

= 105 mm/year) over the growing season from May

through October each year. The water addition treatment,

using an overhead irrigation system with raindrop quality

sprinkler heads, resulted in a 42 % increase in total annual

precipitation based on the long-term average so that,

despite interannual variation in ambient precipitation, all

irrigation plots received higher than average rainfall each

year. Finally, three ambient precipitation plots at each site

served as controls. Chronic drought treatments were

imposed for 5 years from 2002 to 2006, and water addition

treatments, for 4 years, from 2005 to 2008. During our

study from 2002 to 2008, annual rainfall was -22, -32,

?15, ?27, ?30, -3, and ?9 % of the long-term average.,

respectively As a consequence, our drought treatments

resulted in total annual rainfall of 98, 85, 144, 159, and

162 mm from 2002 to 2006, respectively, and our irriga-

tion treatments resulted in total annual rainfall amounts of

417, 425, 343, and 373 mm from 2005 to 2008, respec-

tively. The grassland site was burned in a wildfire in 2009.

Plant community composition was measured in 30 1-m2

permanently located quadrats evenly spaced along three

transects (10 quadrats per transect) in each plot. Transects

were placed at 2.5, 7.5, and 12.5 m in from the western

edge of each plot to minimize edge effects. Percent cover

of each species rooted in or in the case of L. tridentata

overhanging each quadrat was visually estimated. Cover

measures can add up to more than 100 % in quadrats with

large cover values in multiple layers. Cover was estimated

each year in May when cool season annuals were abundant,

and again in September or October when peak biomass of

perennials and warm season annuals occurred. We used the

highest cover value for each species in each quadrat each

year in all analyses.

Data analyses

Because the drought and irrigation manipulations started in

different years, data were analyzed separately, and they are

treated as independent experiments despite sharing control

plots. We used repeated measures ANOVA to evaluate

changes in plant species cover and community structure in

response to the rainfall manipulations. These analyses were

used to compare drought treatment plots to ambient pre-

cipitation plots from 2002 to 2006, and rainfall addition

treatment plots to ambient precipitation plots from 2005 to

2008. Thus, for each experiment, the model included

vegetation type (site), rainfall manipulation (treatment),

time (year), and all the interactions among these factors.

After the full models were run, non-significant interactions
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were deleted to test for main effects. Because none of the

simplified models revealed new terms that were statisti-

cally significant, the full models are presented in Supple-

mental Tables 1–4. Due to the small sample size and the

high variability in vegetation cover from year to year, we

established our initial P value as 0.10. We tested for sig-

nificant differences using Tukey HSD at P B 0.1 (see

Supplemental Material). Nevertheless, many differences

were highly significant despite limited replication.

Response variables were total species richness, cover of

the two dominant species Bouteloua eriopoda and Larrea

tridentata, and combined cover of subdominant grasses

(excluding B. eriopoda), forbs, and subdominant shrubs

(excluding Larrea tridentata). Prior to analysis, total

richness was log-transformed, and all proportional cover

variables were multiplied by 0.1 and then arcsine-trans-

formed to improve normality.

We used nonmetric multidimensional scaling (NMDS;

PCOrd 4.0) to examine differences in subdominant com-

munity composition among the rainfall treatments. We

used drought and ambient species composition data from

2006 and irrigation and ambient species composition data

from 2008 to evaluate the cumulative effects of chronic

drought and rainfall addition, respectively. We used the

Jaccard Index based on a species presence/absence matrix

that included all quadrat samples in all replicates of

treatments and ambient rainfall plots. NMDS ranks sam-

ples in an ordination space according to their similarity and

then places them in a reduced dimensional space based on

their dissimilarity. A Monte Carlo randomization (1,000

randomizations) procedure was used to assign a probability

value to the location of the points in the ordination space.

Next, we used the treatment replicate scores in the first two

axes of the NMDS as dependent variables in a MANOVA

to evaluate if the treatments resulted in different sub-

dominant communities. The MANOVA model included

vegetation type (site), treatment (rainfall manipulation),

and an interaction term.

Results

Dominant species responses

The cover of B. eriopoda responded strongly to chronic

drought and less so to water addition treatments across the

three vegetation types (Figs. 1, 2; Table S1). Relative to

ambient precipitation plots, drought significantly decreased

the cover of B. eriopoda over time, and differences in cover

between ambient and drought treatments were significant

from 2004 to 2006 (Fig. 1). Water addition increased cover

of B. eriopoda over time in all three vegetation types.
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Fig. 1 Changes in percentage cover (mean ± SE) of Bouteloua
eriopoda and Larrea tridentata in response to 4 years of increased

(?42 % of the long-term average) and 5 years of decreased (-50 %

of ambient) rainfall in central New Mexico, USA. The symbols 9 and

* indicate significant differences between drought treatment and

ambient precipitation, and between water addition and ambient

precipitation plots, respectively
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However, significant differences between B. eriopoda

cover in ambient and irrigated treatments in grassland and

mixed vegetation occurred at the start of the experiment,

and these differences were maintained over time. Thus,

cover of B. eriopoda mainly tracked ambient fluctuations in

rainfall.

In shrublands, cover of L. tridentata changed little

through time, thus statistically significant treatment effects

reflected initial differences among sampling units (Fig. 1;

Table S1). However, some trends in L. tridentata cover

emerged over time. In both shrub and mixed vegetation, the

cover of L. tridentata in ambient precipitation plots tended

to increase from 2002 to 2005, and then remained stable. In

shrublands, the cover of L. tridentata in drought plots

varied from year to year compared to areas receiving

ambient precipitation, and decreased slightly during the

last 2 years of the study. In mixed vegetation, the cover of

this species in drought treatments decreased slightly in

2006 only. Water addition did not increase the cover of

L. tridentata in either shrub or mixed vegetation. In fact,

L. tridentata cover in shrublands decreased in water addi-

tion treatment plots during 2007 and 2008.

Bouteloua eriopoda responded more strongly to drought

and irrigation than did L. tridentata (Fig. 2). B. eriopoda

decreased 40–90 % in grass, shrub, and mixed vegetation

in response to chronic drought whereas abundance

increased only 12–28 % in response to irrigation. In con-

trast, abundance of L. tridentata changed from 20–38 %;

however these changes were not consistent with the

experimental treatments. The largest increase in abundance

of L. tridentata occurred in response to drought in mixed

vegetation whereas abundance decreased in irrigated and

drought treatments in Larrea-dominated shrubland.

Plant functional type responses

Plant functional types responses to rainfall manipulations

varied from year to year, and among vegetation types

(Fig. 3; Tables S2, S3). Drought generally decreased the

cover of forbs in shrublands, but forb cover generally

increased over time in grassland and mixed vegetation,

especially in 2006, during a year of record high monsoon

precipitation. Water addition significantly increased the

cover of forbs in shrub vegetation in 2007 and 2008, but

had little consistent effect on forb cover in grassland and

mixed vegetation. Although cover of subdominant grasses

was low in drought treatments to begin with, chronic

drought generally decreased cover of subdominants over

time compared to ambient precipitation plots in all three

sites until cover increased in response to the 2006 mon-

soon. However, water addition had no consistent effects on

cover of subordinate grasses at any site.

Excluding L. tridentata, cover of subdominant shrubs

decreased in shrubland in drought treatment plots com-

pared to ambient precipitation plots (Fig. 3). Cover of

subdominant shrubs increased or remained constant over

time in all treatments in mixed and grass-dominated veg-

etation. Species richness changed significantly over time in

all treatments. Total richness declined in shrub-dominated

vegetation in response to chronic drought until the strong

monsoon in 2006. Otherwise, total species richness gen-

erally increased or was unaffected by water addition or

drought in mixed- and grass-dominated vegetation (Fig. 3).

Subdominant community responses

A three-axis solution in the NMDS ordination sufficiently

represented the variation in species composition after 5 years

of drought or 4 years of water addition treatments (Monte

Carlo randomization, P \ 0.001). The composition of sub-

dominant species was significantly different between drought

and ambient precipitation plots (MANOVA, Pillai’s Trace

values: site4,26 = 0.035, P \ 0.001; treatment2,13 = 2.33,

P \ 0.001; site 9 treatment = NS), and between water

addition and ambient precipitation plots (MANOVA, Pillai’s

Trace values: site4,28 = 0.14, P = 0.002; treatment2,13 =

0.57, P = 0.051; site 9 treatment = NS) (Fig. 4). The

composition of subdominants was also significantly different

across vegetation types. However, subdominant species

composition did not differ within each vegetation type

(site 9 treatment2,12 = 0.82, P = 0.467).

Discussion

Our results indicate that chronic changes in annual pre-

cipitation had significant effects on functional abundance
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and species composition, primarily in shrub-dominated

areas and less so in mixed and grass-dominated vegetation.

Although some differences in cover existed at the outset,

chronic drought significantly decreased the cover of the

dominant native C4 grass, Bouteloua eriopoda, in all three

vegetation types (Fig. 1), whereas the cover of Larrea

tridentata changed over time but inconsistently with regard

to our rainfall manipulations (Figs. 1, 2). In shrub-domi-

nated areas, drought generally decreased plant cover and

species richness, whereas water addition increased or had

little effect on cover of B. eriopoda, functional types or

richness, with limited inter-annual variation in responses
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long-term average) and 5 years of decreased (-50 % of ambient)

rainfall in central New Mexico, USA. The symbols 9 and * indicate

significant differences between drought treatment and ambient

precipitation; and between water addition and ambient precipitation

plots, respectively
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(Figs. 1, 3). Overall, B. eriopoda responded to both

drought and added rainfall (Fig. 2). Moreover, drought and

water addition shifted the species composition of plant

communities in the three vegetation types (Fig. 4). The

distinct and rapid changes of plant functional groups sug-

gest that adjustments in their relative importance is a

potential mechanism that can maintain plant species

diversity and potentially ecosystem processes (e.g., pri-

mary productivity) under altered rainfall regimes.

Our first hypothesis was partially supported. Both

B. eriopoda and L. tridentata responded to water addition

and chronic drought across the three vegetation types.

Abundance of B. eriopoda declined in response to drought

and increased in response to precipitation, a pattern con-

sistent with our initial prediction. On the other hand, the

response by L. tridentata was relatively weak and incon-

sistent across vegetation types. The response of B. eriopoda

agrees with other drought and water addition experiments

in mesic grasslands (Knapp et al. 2001; Zavaleta et al.

2003; Dukes et al. 2005; Suttle et al. 2007; but see Harpole

et al. 2007), and confirms that drought can dramatically

decrease production in desert grasslands (Knapp and Smith

2001; Gerten et al. 2008). The response by L. tridentata

differs from that observed in the Sonoran Desert where

above average monsoon rainfall lead to significant increa-

ses in production by L. tridentata (Sponseller et al. 2012).

Nevertheless, our findings emphasize the variable impor-

tance of water availability for plant growth in arid eco-

systems (Muldavin et al. 2008; Xia et al. 2010; Thomey

et al. 2011).

Plant morphological, physiological, and life history

traits can be useful predictors of the capacity of species to

tolerate drought and respond to precipitation inputs

(Chesson and Huntly 1997; Chesson et al. 2001; Ogle and

Reynolds 2004; Reynolds et al. 2004; Suding et al. 2008).

Therefore, these functional characteristics can be used to

model ecosystem response to climate change (Dı́az and

Cabido 1997; Chapin 2003). In such models, shallow-

rooted species, including grasses and forbs, respond rapidly

to water inputs but decline rapidly in the absence of

rainfall, whereas deep-rooted plant functional types (e.g.,

shrubs), and C4 species tolerate drought conditions for

longer periods and exhibit lagged responses to water inputs

(Ogle and Reynolds 2004). In our case, however, C4

grasses responded strongly and quickly to chronic drought,

a response common in shallow-rooted grasses (Schwinning

et al. 2005).

The limited response of B. eriopoda to increased water

availability may reflect morphological constraints on this

rhizomatous grass. Knapp and Smith (2001) hypothesized

that arid ecosystems would be limited by low meristem

density, or the ‘‘bud bank.’’ Dalgleish and Hartnett (2006)

found that meristem densities differed across a precipita-

tion gradient and that grasses in desert grasslands

(including the SNWR) were meristem-limited. Also,

B. eriopoda showed rapid declines in rate of net photo-

synthesis in a rainfall pulse experiment that controlled the

size and frequency of rain events while maintaining the

same total rainfall amount during the summer monsoon

(Thomey 2012). Thus, the response of desert grassland

species to increased rainfall may be constrained by low

meristem density and photosynthetic capacity.

The slight directional cover changes of L. tridentata

show that this species tended to increase somewhat under

ambient precipitation rates, and that cover may decrease

slightly after a few years of severe drought. Measures of

biomass indicate that L. tridentata responds weakly to

summer precipitation (Muldavin et al. 2008), and during

droughts it depends strongly on deeper soil water that is

unavailable to grasses (Schwinning et al. 2005). This

response contrasts with L. tridentata in the Sonoran Desert
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to 4 years of increased (?42 % of the long-term average) and 5 years

of decreased (-50 % of ambient) rainfall in central New Mexico,

USA. The mean and standard error on two axes are presented to

compare drought (D), water addition (W), and ambient (A) precipita-

tion plots. S shrubland, G grassland, M mixed vegetation
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where production during the summer monsoon can greatly

exceed that of growth following more predictable winter

rains (Sponseller et al. 2012). Nevertheless, abundance

of L. tridentata at our site is likely to change only after

prolonged ([5 years) severe drought, or in response to

other drivers, such as extreme winter cold temperatures

(Pockman and Sperry 1997; Medieros and Pockman 2011).

The lack of a clear response of subdominant grasses to

water addition suggests that their establishment and per-

formance could be negatively affected by competition with

B. eriopoda, as its cover increased in this treatment. Peters

and Yao (2012) found that subdominant grasses and forbs

increased following the experimental removal of B. erio-

poda. Indeed, under high resource availability, small sta-

tured plants can be overshadowed by taller plants (Zavaleta

et al. 2003; Suding et al. 2005), and are limited by the

availability of sites for establishment (Milton and Dean

2000; Bakker et al. 2006). Other results suggest that water

addition may or may not substantially increase the cover of

subdominant grasses (White et al. 2000; Zavaleta et al.

2003; Yao et al. 2006; Harpole et al. 2007; Suttle et al.

2007) at least in part because of competition from domi-

nant species (Peters and Yao 2012). Finally, the interannual

variability in the drought treatments (from 35 to 66 %)

may have contributed to the variable response by the

subdominant species. Thus, interspecific competition and

idiosyncratic responses by subdominant grasses seem to

constrain the potential for this functional group to decline

under drought or increase substantially under elevated

rainfall regimes.

It has been suggested that strong responses to high

precipitation and mild declines under drought conditions

are due to buffering mechanisms that reduce the impact of

drought on plant production in arid and semiarid systems

(Knapp and Smith 2001; Gerten et al. 2008). For example,

C4 grasses have the physiological capacity to tolerate

drought (Fay et al. 2003), and L. tridentata can use water

stored in deep soil layers (Schwinning et al. 2005;

Muldavin et al. 2008). B. eriopoda declined significantly

and quickly in response to rainfall reduction, indicating

that this C4 perennial grass is not particularly drought

tolerant, a result that is counter to assumptions about C4

grasses in some climate change models (Chapin 2003;

Gerten et al. 2008). Thus, more accurate models, which

allow for rapid vegetation changes within and among

functional types (e.g., Collins et al. 2012) under altered

rainfall regimes should be developed to incorporate dif-

ferences in species tolerance to drought and compensation

within plant functional types and plant life history traits

(Reynolds et al. 2004; Collins et al. 2008).

How altered rainfall regimes will affect the abundance

of species has important implications for predicting species

composition and community structure at regional scales

(Chase 2007; Phillips et al. 2009). In our study, in each

vegetation type, rainfall manipulations led to the formation

of plant communities with different species composition

compared to areas receiving ambient precipitation (Fig. 4).

Possibly, drought acted as a filter to promote the survival

and colonization of drought tolerant species, whereas

drought-intolerant species were eliminated from the com-

munity (Kneitel and Chase 2004; Chase 2007). In contrast,

water addition enhanced the growth of drought-intolerant

species, which may have displaced small-statured species,

including annuals (Suttle et al. 2007). Previous studies

have not found such marked directional changes in plant

species composition under drought conditions, although

sensitivity at the seedling stage and idiosyncratic responses

have been reported (Lloret et al. 2004, 2009). Moreover,

we found no indication of convergence toward a single

community composition across vegetation types. As a

consequence, these vegetation types could maintain dif-

ferent species composition under spatially variable rainfall

regimes, thus maintaining high levels of regional diversity

(Kneitel and Chase 2004; Chase 2007).

Changes of B. eriopoda cover due to rainfall manipu-

lations contradicted previous studies conducted in the

northern Chihuahuan Desert, in that rates of summer

precipitation strongly influence B. eriopoda density and

primary productivity at small and large spatial scales

(Huenneke et al. 2002; Báez et al. 2006; Yao et al. 2006).

Others have reported that production of B. eriopoda was

poorly correlated with summer precipitation (Muldavin

et al. 2008). In this study, B. eriopoda was eliminated from

drought treatment plots in shrub vegetation due to its initial

low densities. However, drought can greatly reduce abun-

dance of B. eriopoda throughout the grassland to shrubland

gradient (Fig. 1), which may accelerate shrub dominance

in mixed vegetation, especially when rainfall increases

again. Increased dominance by L. tridentata at the expense

of B. eriopoda has been shown to contribute to high species

turnover and low temporal stability of subdominant com-

munities in shrub-dominated areas compared to grassland

(Báez and Collins 2008).

In this study, examining the responses of individual

plant functional types to rainfall manipulations shed light

on the mechanisms that buffer community responses to

drought, and those that constrain responses to rainfall

(Knapp and Smith 2001; Gerten et al. 2004; Dalgleish and

Hartnett 2006). Our results demonstrated that plant com-

munity dynamics were mediated by complex and at times

idiosyncratic responses among dominant species and plant

functional types. Hence, more accurate forecasts of the

effects of altered rainfall regimes may be achieved by

recognizing that differential responses will likely occur

among plant functional types in aridland plant communities

as a consequence of plant species richness and diversity,
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plant life histories, and interspecific competition. These

differential responses to altered rainfall regimes may con-

tribute to shrub dominance during the process of shrub

encroachment into grasslands.

Acknowledgments We thank John Balulis, Eric Bhark, Shirley

Kurc, JimBob Elliott, Jeremiah Baumgartel, Evan Posdamer and Will

Gallin, undergraduate students at New Mexico Tech and staff of the

Sevilleta LTER who spent time constructing and operating our rain-

fall manipulation experiment. We also thank three anonymous

reviewers for comments that greatly improved the manuscript. Con-

struction of rainout shelters was supported by the National Science

Foundation (SAHRA to EES, Science and Technology Center at the

University of Arizona). Funding was provided by the US Department

of Energy through the Southern Region of the National Institute for

Global Environmental Change at Tulane University (to W.T.P.), the

Western region of the National, Institute for Climate Change

Research at Northern Arizona University (to W.T.P. and S.L.C.) and

the National Science Foundation Long Term Ecological Research

Program (DEB-0620482).

References

Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U,

Ravetta DA, Schaeffer SM (2004) Water pulses and biogeo-

chemical cycles in arid and semiarid ecosystems. Oecologia

141:221–235
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