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[1] Soil hydraulic properties (SHPs) regulate the movement of water in the soil.
This in turn plays an important role in the water and energy cycles at the land surface.
At present, SHPs are commonly defined by a simple pedotransfer function from soil
texture class, but SHPs vary more within a texture class than between classes. To examine
the impact of using soil texture class to predict SHPs, we run the Noah land surface model
for a wide variety of measured SHPs. We find that across a range of vegetation cover
(5–80% cover) and climates (250–900 mm mean annual precipitation), soil texture class
only explains 5% of the variance expected from the real distribution of SHPs. We then
show that modifying SHPs can drastically improve model performance. We compare
two methods of estimating SHPs: (1) inverse modeling and (2) soil texture class. Compared
to texture class, inverse modeling reduces errors between measured and modeled latent heat
flux from 88 to 28 W/m2. Additionally we find that with increasing vegetation cover the
importance of SHPs decreases and that the van Genuchten m parameter becomes less
important, while the saturated conductivity becomes more important.
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1. Introduction

[2] Soil hydraulic properties (SHPs) play a critical role in
land surface models (LSMs). SHPs define the relationship
between soil moisture (q), hydraulic head (y), and hydraulic
conductivity (K), thus controlling how water moves through
the soil. This movement controls the water balance parti-
tioning between evapotranspiration and runoff. In addition,
the availability of soil moisture at different depths in the soil
column controls the partitioning of two key energy fluxes of
concern in climate models, latent and sensible heat. The
distribution of soil moisture also controls the partitioning
between evaporation and transpiration which has implica-
tions for carbon cycling.
[3] LSMs have evolved substantially in the last 30 years,

both in physics and numerical techniques. Here, we focus
on the hydrology component of LSMs, which has evolved
from a single-layer ‘‘bucket’’ model [Manabe, 1969] to a
multilayer solution to the Richards equation [Dickinson et
al., 1993; Mahrt and Ek, 1984; Sellers et al., 1986]. More
recently, the focus has shifted toward ‘‘greening’’ LSMs by
including complex vegetation components [e.g., Sellers et
al., 1986; Bonan et al., 2003]. These models have been
criticized for the discrepancy between the complexity of
aboveground processes, and the simplicity of below-ground
processes [Pitman, 2003]. Researchers have continued to
refine the hydrology submodel of LSMs by refining the
representation of groundwater [Liang et al., 2003; Maxwell

and Miller, 2005; Yeh and Eltahir, 2005]. As the parame-
terization of hydrologic processes becomes more complex,
the importance of accurately identifying SHPs will increase.
Pitman [2003] targets the improvement of hydrologic
processes in LSMs as one of the key challenges for future
work, and comments on the need for global data sets of
SHPs.
[4] Numerous methods have been developed for the

measurement of SHPs, but most are time-consuming and
expensive [Stolte et al., 1994]. For this reason, pedotransfer
functions (PTFs) have been developed to translate more
readily available soil texture data or soil texture class into
SHPs [Wosten et al., 2001]. Soet and Stricker [2003] note
substantial variability between SHPs derived using different
PTFs. In addition, none of the PTFs tested captured the
variability measured in the field. This suggests that the
relationship between SHPs and soil texture may not be very
strong.
[5] In most LSMs, simple PTFs are used to estimate

SHPs according to soil texture class [e.g., Dickinson et al.,
1993; Chen and Dudhia, 2001]. This approach is popular
because it is easy to implement, and because global maps of
soil texture class exist. This approach is based on the
assumption that there is a one to one mapping between soil
texture class and SHPs. However, there is little evidence
that this is the case. Indeed, there appears to be more
variability of many SHP parameters, such as the van
Genuchten m [van Genuchten, 1980] and saturated conduc-
tivity, within a soil texture class than there is between
classes (Figure 1). For example, the saturated conductivity
varies from 100.9 cm/d to 102.3 cm/d (m ± 1s) in the
sandy loam class, while the texture class mean saturated
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conductivity generally varies from 100.9 cm/d to 101.6 cm/d
(m ± 1s) across all classes.
[6] The scale at which SHPs are defined also presents a

problem to land surface modeling [Feddes et al., 1993;
Kabat et al., 1997; Sridhar et al., 2003; Zhu and Mohanty,
2003; Braud et al., 2005]. Field and laboratory estimates of
SHPs are typically made over an area around 100 cm2.
However, LSMs often simulate processes over 100 km2

areas and larger. LSM scale SHPs must effectively incor-
porate all of the variability in SHPs within a grid cell, in
addition to accounting for effects that do not occur at the
scale SHPs are typically measured. For example, within a
single grid cell there may be macropores, calcite horizons,
bedrock outcrops, substantial topography, and other features
which are not accounted for with current SHP models. All
SHPs are calibration parameters, for example, lab measure-
ments of moisture content, flow rates, and water potential
are used to determine van Genuchten m, a, and Ks that
minimize errors between models and measurements. Like-
wise, SHPs used in LSMs are often thought of as calibration
parameters. As a result, relating LSM SHPs to soil texture
based on lab SHPs becomes less meaningful. However,
inverse modeling is well suited to estimating SHPs that are
consistent with the LSM.

[7] The uncertainty in determining SHPs from texture
requires the land surface modeling community to question
the use of soil texture class as a proxy for SHPs. To
determine the error associated with using soil texture class
as a proxy for SHPs, we need to know the effect SHPs have
on model output. To that end we examine output from the
Noah LSM [Chen and Dudhia, 2001; Ek et al., 2003] when
run with a variety of SHPs from a large database of SHPs.
We then compare these model results to model output when
run with the average SHPs for a given soil texture class.
Earlier work by the authors [Gutmann and Small, 2005]
showed that soil hydraulic properties had a large impact on
model performance in a semiarid grassland with little or no
vegetation cover, and that soil texture class was a very poor
predictor of SHPs. The current work examines the response
of the Noah model across a gradient of mean annual
precipitation and vegetation covers. Furthermore, we quan-
tify the degree to which SHP inverse modeling techniques
can improve LSM output. Inverse modeling is the process
of selecting optimal model parameters so that the model
matches a set of measurements. This has the potential to
provide a global map of SHPs to be used in LSMs by
utilizing remotely sensed measurements.
[8] The results of inverse modeling of SHPs in LSMs

may be substantially impacted by vegetation cover. Param-
eter sensitivity studies [e.g., Bastidas et al., 1999; Liang and
Guo, 2003] suggest that SHPs and vegetation properties are
the most important parameters in LSMs. Vegetation tran-
spiration allows water to be removed from deeper layers in
the soil column than bare soil evaporation does [Chen and
Dudhia, 2001]. This is likely to decrease the model vari-
ability related to SHPs because the main impact of SHPs is
on the distribution of water within the soil column. If
vegetation does decrease the impact of SHPs then inverse
modeling of SHPs will be less precise in areas with more
vegetation cover. To examine the effects of vegetation, we
analyze the model variability related to SHPs as we sys-
tematically vary vegetation cover.
[9] To test the effect of SHPs on LSMs we ran three

model experiments to answer three questions. (1) What is
the range of LH expected given the distribution of SHPs,
and how well do soil texture class SHPs predict this LH
distribution? This question is important because the answer
will examine how well current methods of determining
SHPs in LSMs works. (2) How does measured LH compare
to modeled LH when using best fit SHPs from inverse
modeling, and when using soil texture class average SHPs?
This question is important because the answer will demon-
strate how well the models are capable of fitting measured
data if correct parameters are chosen, as well as further
analyzing how well current methods work. (3) Does the
model sensitivity to SHPs change with increasing vegeta-
tion cover? This question is important because the answer
will provide guidance to future researchers on the circum-
stances required to select SHPs via inverse modeling.

2. Methods

2.1. Soils Database

[10] We used the SHP database of Schaap and Leij [1998]
as input for this study. This database is a collection of
3 other databases (RAWLS, AHUJA, and UNSODA), and as

Figure 1. Histograms showing (top) the variability of van
Genuchten m parameter and (bottom) the saturated
conductivity (Ks) within each soil texture class. Histograms
are normalized to have the same maximum height
regardless of the number of soils. Numbers on top are the
number of samples used in each class. The silt class is not
listed because no silts with measured Ks exist in the
database.

2 of 13

W05418 GUTMANN AND SMALL: SHPS IN LSMS W05418



such it is one of the largest SHP databases available. The
public domain UNSODA database [Leij et al., 1996] forms
the bulk of the Schaap and Leij [1998] database. The
database of Schaap and Leij [1998] contains 1306 soils with
complete SHP measurements and an additional 825 soils that
lack saturated conductivity data. Additionally, this database
forms the basis of the widely used US Department of
Agriculture Agricultural Research Service’s ROSETTA
model [Schaap et al., 2001]. Compared to the larger soils
database used by Carsel and Parrish [1988], which does not
contain SHPs, this database is biased toward coarser textured
soils. The database of Schaap and Leij [1998] contains
253 sands and but only 60 clays, as compared to 803 sands
and 1177 clays in the work of Carsel and Parrish [1988].
Despite this bias the SHP database is large enough to depict
the distribution of SHPs within each texture class, only
three soil texture classes are represented by fewer than
50 soils. We used this database because of its international
nature, availability of the database to other researchers, as
well as the extensive use of this database and the UNSODA
database [Leij et al., 1997; Kravchenko and Zhang, 1998;
Arya et al., 1999; Hoffmann-Riem et al., 1999; Poulsen et
al., 2000; Schaap et al., 2001].
[11] The SHPs in this database were not measured at

the LSM scale, but it is the best database available. It is
based on lab and field measurements of relatively small
soil samples that would cover an area of approximately
100 cm2. These are likely to show more variation in SHPs
than would be seen in SHPs derived at the larger scales used
in LSMs (0.1–1000 km2). The Model Parameter Estimation
Experiment (MOPEX) [Duan et al., 2006] may generate a
database of SHPs at the LSM scale, but currently no such
database exists, and existing methods of scaling SHPs from
small scale measurement to LSM scales require multiple
SHP measurements from the same location [Zhu and
Mohanty, 2002, 2003]. Their work on SHP scaling also
suggests that if an area with homogenous SHPs exists, the
small-scale measurement would be appropriate to use at the
larger scale. As a result, this database represents a reason-
able source of information to test the effect of variation in
SHPs.

2.2. Soil Hydraulic Property Model

[12] Many SHP models exist to estimate the relationship
between soil moisture, hydraulic conductivity, and hydrau-
lic head. The SHP database of Schaap and Leij uses the van
Genuchten model. Translating between SHP models is
imperfect [e.g., Morel-Seytoux et al., 1996]; therefore we
used the soil hydraulic property model of van Genuchten
[1980] (equations (1) and (2)).

y ¼ S�
1
m � 1

� �1
n

=a ð1Þ

K ¼ Ks * S0:5 * 1� 1� S
1
m

h im� �2

ð2Þ

where S = q�qr
qs�qr

, q = soil moisture content, qr = residual
moisture content, qs = saturated moisture content, Ks is the
saturated hydraulic conductivity, and a, n, and m are curve
fitting parameters. The parameter space for this model is
commonly limited by setting m = 1 � 1

n
, and we also adopt

this convention. Residual moisture content is the moisture
content at which water ceases to flow through the soil,
except by vapor diffusion, and is typically much lower than
the wilting point.
[13] Currently, most LSMs use the Campbell [Campbell,

1974] SHP model (equations (3) and (4)).

y ¼ ys

q
qs

� ��b

ð3Þ

K ¼ Ks

q
qs

� �2bþ3

ð4Þ

where ys and b are curve fitting parameters, ys is similar to
1
a and b is related to n. ys and a are both related to the air
entry pressure of the soil, while b and n are related to the
pore size distribution. The Campbell model was modified
by Clapp and Hornberger [1978] and is often cited as such
even without modification. The Campbell model is simpler
than the van Genuchten model, but it has several limitations.
It contains a discontinuity at ys, intended to reflect a single
air entry pressure. However, in real soils, a range of pore
sizes exist, and as a result, measured data typically vary
continuously in this region. In addition, the model
discontinuity can introduce numerical problems both in
fitting measured data [Milly, 1987] and in using it in
hydrologic models [van Genuchten, 1980]. Furthermore,
applying scaling techniques to this type of model has
proven more difficult than for others [Zhu and Mohanty,
2003]. The van Genuchten model has been shown to fit
measured data better than Campbell type models [Milly,
1987; Leij et al., 1997], and scaling procedures are available
for it [Zhu and Mohanty, 2003].

2.3. Land Surface Model

[14] We used the Noah [Chen and Dudhia, 2001; Ek et
al., 2003] land surface model to examine the effects of
SHPs on LSM fluxes. Noah is based on the OSU land
surface model [Mahrt and Ek, 1984]. The soil hydrologic
component of the model solves the diffusion form of the
Richards equation in one dimension and we used the van
Genuchten [1980] model for the relation between hydraulic
head, moisture content, and hydraulic conductivity. The
fluxes at the land surface are determined to conserve both
mass and energy based on a Penman type combination
equation. The Noah model is designed to be coupled with
the weather research and forecasting model (WRF), but also
has an off-line mode in which it can use atmospheric
boundary conditions measured near the ground surface.
We used the off-line mode here.
[15] The standard Noah model uses the Campbell SHP

model [Campbell, 1974], but for the reasons outlined in the
previous section we modified Noah to use the van Genuchten
formulation [van Genuchten, 1980]. The Noah model uses a
separate subroutine to calculate SHPs, as such, it is possible
to test the new subroutine separately from the rest of the
model to insure correctness. Shao and Irannejad [1999]
showed that the specific SHP model used in an LSM does
not dramatically alter the LSM, and that if the correct SHPs
are chosen, two otherwise identical LSMs with differing SHP
models can produce the same output (r2 = 0.99). Shao and
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Irannejad [1999] also showed that selection of SHPs was far
more important than the SHP model used. Additional prece-
dent is set for this type of modification in studies such as the
ones byMorel-Seytoux et al. [1996] and Gutmann and Small
[2005] and by models such as UNSAT-H [Fayer, 2000] that
allow the user to select the SHPmodel they prefer at runtime.
In addition, we ran the Noah LSM with optimized SHPs for
both the van Genuchten and the Campbell version, and found
that the two versions of the model showed nearly identical
results.

2.4. Site Parameters, Boundary, and Initial Conditions

[16] Weather forcing data for the models were collected
from the Sevilleta National Wildlife Refuge (NWR) and
Long Term Ecological Research (LTER) station grass and
shrub sites of Kurc and Small [2004] and at nine additional
sites by the International H2O Project (IHOP) [Weckwerth et
al., 2004]. These 11 sites are spread out from eastern Kansas
to central New Mexico, and mean annual precipitation
varies from 250 to 900 mm (Figure 2 and Table 1). The
following atmospheric forcing data were collected at all
sites: air temperature, pressure and humidity, wind speed,
and shortwave and longwave downward radiation. In addi-
tion, latent and sensible heat fluxes were measured by the
Bowen Ratio method (Sevilleta grass and shrub sites), and

by the eddy covariance method (IHOP sites). Table 1
summarizes the model parameters used for each site.
[17] The Sevilleta grass site is dominated by black grama

(Bouteloua eriopoda) with 50% vegetation cover, though
the fraction that is active varies over time with a typical
value of 25% [Matsui et al., 2003]. The Sevilleta shrub site
is dominated by creosote bush (Larrea tridentata) and has
30% vegetation cover, most of which is active. On average,
these sites get 250 mm of rain per year. Data were collected
at a reference height of 2 m. Surface roughness (0.03 m
grass, 0.08 m shrub) was determined as one tenth the height
of vegetation cover. Albedo (0.14 grass, 0.16 shrub) was
determined from measurements of incoming and outgoing
radiation [Small and Kurc, 2003]. The soil at both sites is
classified as a sandy loam.
[18] For the Sevilleta we initialized the model soil moisture

as dry, consistent with observations at this site [Small and
Kurc, 2003], and started the model 1 January the year prior to
the period of interest (18 month spin-up) using continuous
weather observations. To determine the model sensitivity to
SHPs, we analyzed midday (12:00 to 3:00 PM) model output
following a large rain storm, 33 mm at the shrub site and
10 mm at the grass site.
[19] The nine IHOP sites cover a range of annual precip-

itation levels and vegetation characteristics (Table 1). Mean
annual precipitation ranges from 530 mm at station 1 to
900 mm at station 9. Vegetation ranges from essentially bare
ground at station 1 to 80% natural grass at site 9 and with
the most common species being big bluestem (Andropogon
gerardii vitman), little bluestem (Schizachyrium scopa-
rium), sand sagebrush (Artemesia filifolia), smooth sumac
(Rhus glabra), field bindweed (Convolvulus arvensis),
witchgrass (Panicum capillare), common wheat (Triticum
aestivum), and Indian grass (Sorghastrum nutans). The top
2 cm soil layer included the following soil texture classes:
sandy clay loam (sites 1 and 2), sandy loam (site 3), loam
(site 4), clay loam (sites 5 and 6), silty clay loam (sites 7–9).
The next soil layer down was usually the same texture
class, at some sites silty clay and clay were also present at
greater depth. Bulk densities ranged from 1.03 to 1.70 g/cm3,
and saturated moisture contents ranged from 0.32 to
0.69 (cm3/cm3).
[20] For these sites, we also initialized the model soil

moisture dry and started the model 1 January the year prior
to the period of interest (17 month spin-up). Weather
forcing data were only available for 2 months, so we used
HRLDAS (High-Resolution Land Data Assimilation System)

Figure 2. Map of site locations. Site labels are given in
Table 1.

Table 1. Site Parametersa

Variable SevS SevG IHOP 1 IHOP 2 IHOP 3 IHOP 4 IHOP 5 IHOP 6 IHOP 7 IHOP 8 IHOP 9

Map ID a b c d e f g h i j k
Dominant vegetation creosote grass bare grass sagebrush grass wheat wheat grass grass grass
Vegetation cover, % 30 25 5 30 45 30 50 50 70 75 80
Texture class Sa, L Sa, L Sa, C, L Sa, C, L Sa, L L L C, L Si, C, L Si, C, L Si, C, L
Rain event, mm 33 10 14 17 19 29 32 24 30 96 61
MAP, mm 250 250 530 540 560 740 750 800 900 880 900
Albedo 0.16 0.14 0.25 0.21 0.18 0.21 0.19 0.20 0.23 0.25 0.19
Zo, m 0.08 0.03 0.0024 0.024 0.029 0.011 0.059 0.049 0.023 0.018 0.012
Latitude 34.335 34.358 36.472 36.622 36.861 37.358 37.378 37.355 37.313 37.407 37.410
Longitude �106.729 �106.701 �100.618 �100.627 �100.594 �98.245 �98.164 �97.653 �96.939 �96.766 �96.567

aTexture classes are as follows: Sa, sand; L, loam; Si, silt; C, clay. MAP is mean annual precipitation. Zo is surface roughness.

4 of 13

W05418 GUTMANN AND SMALL: SHPS IN LSMS W05418



Figure 3. Time series of latent heat flux following a rainstorm at each site. Statistics for Tables 2a and
2b come from the day with shaded background. The X axis is the day of the year. A random subset of
50 soil hydraulic properties (SHPs) (dotted line) is presented at each site because if all soils are shown, it
becomes impossible to distinguish individual lines. Individual SHPs (gray dotted line) come from the real
soil texture class at each site. Measured LH (blue line), best fit SHP LH (green line), best fit SHP for the
entire period LH (yellow dashed line), and texture class average SHP LH (red line) are also shown.

W05418 GUTMANN AND SMALL: SHPS IN LSMS

5 of 13

W05418



[Chen et al., 2004] data to spin up the model. These data are
not ideal because they are not local measurements, but they
represent the best estimate for each site. We repeated all of
the analyses with a spin-up period developed by looping over
the available weather data, and found it had little to no effect
on the results.
[21] For most IHOP sites, the closure of the energy

balance from measured fluxes (equation (5)) generally
ranged from 0.8 to 1.2.

closure ¼ LH þ H

Rn � G
ð5Þ

where LH is latent heat flux, H is sensible heat flux, Rn is
net radiation, and G is ground heat flux. Periods in which
closure was below 0.8 were excluded from the analysis.
Closure was never above 1.2 for a significant period. For
sites 7 and 8, closure was often as low as 0.4. This error is
likely to come from the measurement of LH and sensible
heat flux (H) [Twine et al., 2000]. To correct errors in
closure, we adjusted the measured LH to force closure while
keeping the bowen ratio constant (equation (6)).

LH* ¼ LH þ 1

2
LH

Rn � G

lE þ H
ð6Þ

where LH* is the corrected latent heat flux, and X denotes
the mean value of X for the day of the current measurement.

Closure was forced on a daily basis, not for individual
measurements. While this will not remove all of the error in
the flux measurements, it makes them consistent with the
radiation measurements which are supplied to the model as
inputs. Sevilleta flux measurements were made by the
Bowen Ratio method and inherently have a closure of 1.

2.5. Model Experiments

[22] We selected a single rain event for part of these
experiments because the short IHOP record did not include
multiple complete dry down events at all sites. The rain
event used for these experiments was selected based on the
measured flux data. First, midday energy balance closure
(equation (5)) for measured data on the days following the
event was required to be between 0.8 and 1.2 following the
storm. Then the storm with the largest measured LH
response was selected. Measured LH for the selected
interval is shown for all sites in Figure 3. For seven of
the nine IHOP sites we used the same storm. IHOP 8 and 9
had poor energy balance closure during this storm, so a later
storm was used at those sites. The size of the event varied
from site to site (Table 1).
2.5.1. Soil Texture Class as a Predictor
[23] The following modeling experiment was designed to

test the effectiveness of texture class average SHPs. We
assume that the SHPs in the database of Schaap and Leij
[1998] represent the real distribution of SHPs within each
texture class, and we treat LH output from model runs with
these SHPs as the expected distribution of fluxes. We then
examine how well model runs with soil texture class
average SHPs predict this expected distribution of LH
fluxes.
[24] We ran the Noah model once for each soil in the SHP

database of Schaap and Leij [1998], and for the texture class
average SHPs. The complete spin-up period was run sepa-
rately for each set of SHPs. We compared these model runs
by their midday (12:00 to 3:00 PM) average latent heat flux
(LH) on the day after a rain event. We calculated how well a
model using texture class average SHPs predicts the model
output from the distribution of SHPs in the database via
equation (7). Equation (7) computes the coefficient of
determination for the relationship as 1 minus the ratio of
the sum of the squared model residuals to the sum of the
square deviations from the mean. This step was performed
independently for each site.

r2 ¼ 1�

Xn
i¼0

LH SHPið Þ � LH SHPSTCð Þð Þ2

Xn
i¼0

LH SHPið Þ � LH SHPið Þ
� �2

ð7Þ

where r2 is the predictive capability of soil texture class at a
site (similar to the Nash-Sutcliffe efficiency). LH(SHPi) is
the LH from a model run at a site with the SHP of the ith
soil. LH(SHPSTC) is the LH from a model run with the SHP
of the soil texture class average for the texture of the ith soil.
LH SHPið Þ is the mean LH at a site from all model runs.
[25] To remove the bias in the database toward coarser

texture soils, a random subset of 50 soils was selected
from each texture class. r2 was calculated independently
for 100 random subsets and the average of those 100 subsets
was used. For the silt clay loam, sandy clay, and silty clay

Figure 4. Flowchart for soil hydraulic property (SHP)
selection procedures. Commonly, researchers use a soil
texture class (shown on the left) to determine SHPs. Inverse
methods (shown on the right) use a measure of model
performance to determine model parameters. We then
compare both methods’ prediction of LH to measured LH.
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Figure 5. Histograms of midday latent heat flux resulting from the variability of SHPs within each soil
texture class on the day after a rainstorm. Best fit LH (dotted line), measured LH (solid line), and class
average LH (crosses) are plotted on top of the histograms. The actual texture class for each site is shaded
in dark grey. Histograms are normalized as in Figure 1.
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texture classes all available soils were used because the
database contained fewer than 50 soils in these texture
classes.
2.5.2. Inverse Modeling
[26] We analyze the degree to which model output can be

improved by careful SHP selection by comparing measured
LH to modeled LH with SHPs selected by an inverse
procedure. The inverse procedure we used to select the best
SHP for each site (Figure 4) was designed to minimize error
between measured and modeled LH. To select the best SHP,
we ran the Noah model for all SHPs in the database, and
selected the SHP used in the model run that provided the
best fit to the measured data. This simplified the search
domain to 1306 SHP combinations, and forced the SHPs to
be realistic combination of parameters. Other inverse meth-
odologies [e.g., Gupta et al., 1998; Bastidas et al., 1999;
Vrugt et al., 2003] are also appropriate.
[27] For this experiment, we selected the best SHPs at

each site for a single dry down event, and for the entire
period for which good LH measurements were available.
The dry down events were selected based on the criteria
used in the previous section. A four to six day window of
clear days following the rain event were used for the inverse
procedure, and a single day following the event was used
for comparison. We used up to six days because this was
identified by Kurc and Small [2004] as being the most
important period for dry down dynamics. When fitting the
entire record we used any days in which closure was within
0.15 of 1.0 and midday LH was greater than 50. For the
IHOP sites, we only used days that were after the first
10 days of measured data to allow the model to adjust to any
possible discrepancies between the HRLDAS forcing and
the measured weather forcing. We were unable to perform a
calibration on one rain storm and a comparison based on
another due to the brevity of the IHOP records. However, by
fitting the full LH record we have an independent estimate to
be used for verification. For comparisons between sites, we
removed the site to site variability in potential evaporation
by looking at the evaporative fraction (EF equation (8)).

EF ¼ LH

Rn � G
ð8Þ

where Rn is net radiation, and G is ground heat flux. We
then compared the measured LH to the model output using
the inverse SHP from a single dry down, the inverse SHP
from the full period, and the texture class average SHP. We
use this comparison to quantify how well it is possible to
improve the model output by modifying SHPs.
[28] To confirm that the SHPs selected with this method-

ology are optimal for a site not just for a single storm,
‘‘best’’ SHPs were selected for a series of different storms at
the Sevilleta shrub site, which has a multiyear record. We
selected all rain storms greater than 5 mm, and then used the
measured LH on the following six days to optimize SHPs

for each storm. If another rainstorm greater than 2 mm
occurred after the first two days, then only the days prior to
that storm were used for calibration. If another storm greater
than 2 mm occurred within 2 days of the large storm than no
SHPs were selected [Kurc and Small, 2004]. If rain contin-
ued for several days in a row, then the storm size was
calculated including rain fall over the two days prior to the
main rain event. Additionally, only days for which the
midday measured LH was greater than 100 W/m2 were
used. These criteria led to the selection of 7 storms. The
resulting SHPs from all 7 storms were compared in addition
to the SHPs for various soil texture classes. Storm sizes
used were, 23, 17, 12, 9, 10, 33, and 11 mm, in chrono-
logical order.
2.5.3. Vegetation Effects
[29] To examine the effect of vegetation, we looked at the

variability in model output caused by SHPs as vegetation
cover was varied. We present results from IHOP site 8,
though other sites show a similar pattern. We ran all soils in
the database and varied vegetation cover from 0 to 100% in
10% increments. We then compared the mean LH and the
10th and 90th LH percentiles at each vegetation level on the
day after a 25 mm rainstorm. This is not the same storm
used in the previous sections because we did not require LH
measurements for this analysis, and the storm used in the
previous section was substantially larger than normal.

3. Results and Discussion

[30] For all texture classes, at most sites, modeled
latent heat flux (LH) is low (0–150 W/m2) before a
rain storm, and higher (100–600 W/m2) after (Figure 3).
Measured LH follows a similar pattern across all sites,
low (50–200 W/m2) before and higher (250–450 W/m2)
after the storm. In all cases the texture class average model
LH falls near the middle of the distribution of modeled LH,
however, the measured LH sometimes falls near the middle
(IHOP 1, 5, 6, 9), the bottom (IHOP 7, 8) or the top (SevS,
SevG, IHOP 2, 3, 4) of the distribution. In some cases, the
measured LH starts at the high end of the model distribu-
tion, and decreases to the low end of the distribution over
the course of the dry down (SevS, SevG, IHOP 1, 3).
Differences between the measured LH and the model LH
distribution may be due to variations in SHPs from site to
site, model structure error, errors in other model parameters,
or simply to errors in the measurement of either the
meteorological forcing or the resultant fluxes. To examine
the effect of SHP variability within the database we look at
the distribution of LH on the day following the storm.

3.1. Soil Texture Class as a Predictor

[31] On the day following the storm, LH values varied
more within a soil texture class than they do between soil
texture classes at all sites (Figure 5). In general, midday LH
varies by 200–300 W/m2 within a soil texture class, but the
median values from each class only vary by 100 W/m2

Table 2a. Average Range of Modeled LH Within and Between Soil Texture Classes

Predictor SevS SevG IHOP 1 IHOP 2 IHOP 3 IHOP 4 IHOP 5 IHOP 6 IHOP 7 IHOP 8 IHOP 9

Average LH range within texture classes, W/m2 242 182 180 134 212 250 297 278 362 483 339
LH range of texture class medians, W/m2 129 87 119 73 84 104 97 92 78 19 18
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(Table 2a). This indicates that soil texture class represents a
small percentage of the total variation in LSM fluxes that is
due to SHPs. The exceptions to this distribution are the sand
texture class, and IHOP sites 8 and 9, in which there is
much less variation in model LH. These exceptions will be
discussed at the end of this section. In addition, for 5 of the
11 sites, the measured LH falls near the top of the model LH
distribution. The texture class average model LH often falls
in the middle of the model LH distribution, and in several
cases, it falls below the mode of the distribution. This might
indicate a bias in the texture class average values.
[32] To quantify how well soil texture class works as a

predictor, we calculate coefficients of determination (r2)
between model LH and several predictor variables: texture
class (equation (7)), particle size distributions (texture), van
Genuchten m, and log(Ks). These relationships are often
nonlinear, so we used a fourth-order polynomial in the
regression for all variables other than texture class average.
Because of the nature of the sand class, we treat it as an
outlier and do not include it in these calculations. The van
Genuchten m parameter explains the vast majority of
variance in modeled LH output (46–72%, Table 2b) at sites
with less vegetation cover. At sites with more vegetation
cover (greater than 50%), Ks explains most of the variance
in model LH (46–76%). In contrast, soil texture class
explains 0–15% of the variance in modeled LH. It is
possible to improve on soil texture class by using the
particle size distributions (percent sand, silt, and clay).
However, even with this additional information, it is only
possible to explain 8–24% of the variance in LH.
[33] The limited utility of soil texture is expected given the

imperfections of pedotransfer functions, as demonstrated
by Soet and Stricker [2003]. Our study may be a slight over
estimate of the range of output values because the SHPs
used are based on small soil samples which may show more
variability than site-scale SHPs. However, it is unlikely that
using SHPs derived at an appropriate scale would substan-
tially improve the correlation with texture class, and in

Figure 7. SHPs selected from multiple storms for the
Sevilleta shrub site (triangles). Sandy loam soil texture class
average SHPs (asterisk) is shown with ±2s in gray. X and Y
axis ranges were set to the minimum and maximum values
in the SHP database.

Figure 6. (top) Soil texture class average evaporative
fraction (EF = LH/(Rn � G)) versus measured EF, (middle)
best fit EF versus measured EF, and (bottom) best fit full
record EF versus measured EF. One to one line is drawn for
reference, and the slope and correlation of the regression
line are above each graph.

W05418 GUTMANN AND SMALL: SHPS IN LSMS

9 of 13

W05418



addition, other sources of variability are likely to be
introduced in the effective SHPs at larger scales that are
not accounted for by the SHPs in this database.
[34] The sand texture class is significantly different from

all other soil texture classes (Figure 5). Within the sand
class, LH only varies by 50–300 W/m2, and at most sites,
modeled LH falls within a 50 W/m2 range. Interestingly, the
sand class shows more variation at most of the sites with
50% or greater vegetation cover (IHOP 5, 6, 7). It is critical
that LSMs can distinguish between more than just sand and
nonsand because, in a larger soils survey of 15737 soils
across the United States, sands constitute only 5% of soils
[Carsel and Parrish, 1988].
[35] IHOP sites 8 and 9 show a different pattern from the

other sites (Figure 5). At these two sites, the majority of
modeled LH values fall in a very narrow range. This may be
due to a combination of two factors. Both of these sites have
a very large rainfall event (96 and 61 mm respectively), and
both of these sites have more vegetation cover (75% and
80%) than the other sites. While there are SHPs at site 8 that
fit the measured LH, they are outside of the normal range. It
is likely that the measured LH at this site does not fit the
typical distribution of model LH, due to model structure
error. This will be discussed further in the inverse modeling
section below.

3.2. Inverse Modeling

[36] Inverse selection of SHPs reduce RMS errors between
measured and modeled midday LH from 88W/m2 to 28W/m2

for SHPs fit to the individual storm and to 39 W/m2

for SHPs fit to the entire record. Inverse methods increased
the correlation between measured and modeled EF in this
study from r2 = 0.06 to r2 = 0.64 and r2 = 0.61 respectively
(Figure 6). The slope between predicted and modeled EF
changes from 0.13 to 0.89 and 0.88 respectively.
Because EF includes net radiation and ground heat flux,
and we have selected data with reasonable energy balance
closure, this shows that SH is also fit better as the sensible
heat fraction equals one minus EF. This clearly illustrates that
when texture class is used to predict SHPs, very little of the
site to site variability is accurately predicted by the model,
and the variability that is predicted may be a function of
other parameters such as vegetation cover and storm size.
Additionally, though results are comparable when SHPs are
fit to the dry down in question or to the full period, RMS
errors are improved when the model is fit to the individual
dry down. These results are not limited to sparsely vegetated
areas, though the expected distribution of model LH
(Figure 3) suggests that SHPs are more important in areas
with less vegetation cover.

[37] Inversely derived SHPs are effective calibration
parameters for the entire soil column. Ideally SHPs would
be derived for each major soil horizon, but the inverse
problem is likely to be ill posed when the number of
parameters increases substantially. In addition, LSMs are
often used with vertically constant SHPs. As a result, it is
better to derive effective SHPs for the entire column.
[38] It is clear that our inverse selection of SHPs produces

consistent results. When the inverse procedure was applied
independently to multiple storms at the Sevilleta shrub site,
SHPs generated for each storm were similar. The differences
between SHPs generated for different storms were small
relative to the difference between them and the texture class
average SHP (Figure 7). In both the Ks and m parameters,
the two most important parameters as shown in Table 2b,
the variation in best fit parameters between storms was also
much less than the variation within the texture class as a
whole. Ks values fell between 101.5 and 102.5, while sandy
loams typically range from 100.2 to 103. m values ranged
from 0.05 to 0.15, while sandy loams typically range from
0 to 0.55.
[39] Inverse methods clearly produce LSM parameter

sets that more accurately reflect measured LH and SH
values, but these parameter sets may be compensating for
errors in other LSM parameters, errors in model structure,
or errors in the input or measured data sets. The most likely
examples of this in our data set are IHOP sites 2 and 8. At
these sites the measured LH values fall significantly outside
the typical distribution of LH values. Both of these sites had
a very large rain event with site 8 having more vegetation
cover and site 1 being almost bare ground. It is likely that
these differences between model and measured LH are due

Table 2b. Summary of r2 Values Between Measured and Modeled Evaporative Fraction Using Different SHP and Texture Predictor

Variables in a Fourth-Order Polynomial (Ks, m, and Sand, Silt, Clay) or Texture Class Average Model Output as a Predictor Variable

(Equation 7)a

Predictor SevS SevG IHOP 1 IHOP 2 IHOP 3 IHOP 4 IHOP 5 IHOP 6 IHOP 7 IHOP 8 IHOP 9

log(Ks) 0.32 0.35 0.26 0.27 0.36 0.27 0.38 0.35 0.46 0.76 0.65
m 0.72 0.63 0.72 0.63 0.46 0.66 0.48 0.47 0.29 0.01 0.01
Texture class 0.15 0.07 0.06 0.09 0.04 0.13 <0.01 <0.01 <0.01 <0.01 <0.01
Sand, silt, clay 0.24 0.16 0.23 0.21 0.17 0.19 0.15 0.14 0.12 0.09 0.08

aSee text. The best r2 is in bold for each site.

Figure 8. Effects of increasing vegetation cover. Mean LH
(solid line), 10th and 90th percentiles (dotted lines), and the
range from the 90th to the 10th percentile (dashed line) for
the distribution of SHPs are plotted for IHOP 8.
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to a combination of model structure error and LH measure-
ment error. Because an inverse procedure incorporates these
other sources of error, it may be necessary to use inversely
derived SHPs within the same modeling framework that
they are derived in. The transferability of SHPs between
sites and models is the subject of other research studies
[e.g., Hogue et al., 2005] and should be studied more in
the future.

3.3. Vegetation Effects

[40] Increasing vegetation cover changes the impact of
SHPs on Noah model output. The average LH response

increases from 190 to 450 W/m2 as model vegetation cover
increases from 0 to 100% at IHOP site 8 (Figure 8). In
contrast, the difference between the 10th and 90th percentile
of LH decreases from 150 to 30W/m2, with a corresponding
decrease in the coefficient of variation from 0.5 to 0.16.
This is likely to occur because vegetation is able to draw
water from the top 3–4 model soil layers, depending on the
rooting depth. Thus LH is less affected by movement of
water from one layer to the next for vegetated areas than for
bare soil. Because this movement is strongly controlled by
SHPs, SHPs have less effect on the Noah LSM when
substantial vegetation cover is present. However, drainage

Figure 9. Effects of increasing vegetation cover on the relative importance of (left) Ks and (right) m. As
vegetation increases from 0 to 90% cover (from top to bottom), the distribution of model LH is more
sensitive to Ks and less sensitive to m. The majority of soils in the cluster of high Ks, high m, and low LH
are in the sand class.
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below the root zone, the distribution of water within the root
zone, and surface runoff are controlled by SHPs as well and
these effect LH even with more vegetation cover. With
increased vegetation cover, texture class still does not
predict the variation caused by SHPs, but that variation is
a smaller percent of the total LH.
[41] In addition, the variation in LH within the sand class

actually increases with increasing vegetation cover. This
result is not seen in the model runs shown in Figure 5
because the storms used in Figure 5 for IHOP sites 8 and 9
are dramatically larger (96 and 61 mm). At that point the
soil was completely saturated for almost all SHPs. It was not
possible to use the smaller storm for the earlier section of
this study because there were problems with the LH
measurements during that period.
[42] The importance of different SHP parameters changes

as vegetation cover increases (Figure 9). As vegetation
cover increases, the amount of variability in LH explained
by the m parameter changed from 79 to 37%, while the
variability explained by Ks increases from 50 to 63%. Note
that the sum of these r2 values is greater than one due to
correlation between Ks and m. This occurs because, as
vegetation cover increases, the source of variability shifts
from water movement between the topsoil layers to variations
in runoff and deep infiltration. Runoff and deep infiltration
are primarily controlled by Ks rather than m and thus Ks
becomes a more important parameter.

4. Conclusions

[43] The use of soil texture class alone is not an adequate
method of determining SHPs for LSMs. The main functions
of LSMs in climate and weather modeling is the calculation
of energy and moisture fluxes to the atmosphere. Of the
total variance in these fluxes, soil texture class accounts for
only 5%, while the van Genuchten m and saturated conduc-
tivity parameters explain 56 and 62% respectively. Addition-
ally, we have shown that it is possible to explain 20% of the
variance if particle size fractions are used to predict LH, but if
a pedotransfer function is used to predict SHPs from particle
size fractions, the additional intermediate step is likely to
decrease this value. These results are generally consistent for
all surface fluxes in the Noah model, with and without
vegetation cover, over a range of climatic regimes, and
indicate the importance of properly estimating SHPs.
[44] Because of the inherent difficulties of measuring

SHPs directly, especially on a global scale, we suggest that
this data set must be constructed via inverse modeling based
upon remotely sensed data sources such as skin temperature
derived from IR measurements or soil moisture derived
from microwave systems [e.g., Burke et al., 1998] or from
the Gravity Recovery and Climate Experiment (GRACE).
The work of Burke et al. [1998] showed a derivation of
SHPs from a passive microwave system, but more work
needs to be done to determine how well SHPs can be
derived globally from remotely sensed data sets. We have
shown that inverse methods reduced RMS errors in the
Noah model LH from 88 to 28 W/m2, and that the SHPs
derived through inverse modeling are consistent across
different periods of a longer record. Inverse methods are a
better method of deriving SHPs for LSMs because of issues
related to scale and model structure. Inverse methods derive
SHPs at a scale commensurate with LSMs, as compared to

conventional methods which measure SHPs over a small
(�100 cm2) area. SHPs derived from inverse modeling
incorporate errors in model structure, and non-SHP param-
eters. As a result, inversely derived SHPs must be used
within the same model as they are derived in, with the same
non-SHP parameters.
[45] Finally, we have shown that the importance of SHPs

with respect to LH decreases with increasing vegetation
cover, and that the dominant SHP changes from the van
Genuchten m parameter to the saturated conductivity. The
mean LH value increases with increasing vegetation cover,
but the coefficient of variation of LH between SHPs
decreased by from 0.50 to 0.16. This change occurs because
of decreasing importance of soil water movement when
vegetation is able to draw water from a range of depths.
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